Augmenting Frontal Face Models for Non-Frontal Verification

Conrad Sanderson and Samy Bengio
IDIAP, Rue du Simplon 4, CH-1920 Martigny, Switzerland
conradsan@ieee.org,bengio@idiap.ch

Abstract DCTmod2/GMM approach is an extreme example of a non-holistic

In this work we propose to address the problem of non-frontaPProach; here, the spatial relation between face characteristics is
face verification when only a frontal training image is available €ffectively lost (which results in robustness to translations [4]). In
(e.g. a passport photograph) by augmenting a client's frontal facd?€tween the two extremes are systems based on multiple template
model with artificially synthesized models for non-frontal views. Inmatching [3], modular PCA [20, 22], Pseudo 2D Hidden Markov
the framework of a Gaussian Mixture Model (GMM) based classifierModels (HMMs) [10, 26] and heuristic approaches such as Elastic
two techniques are proposed for the synthesis: UBMdiff and LinRed3raph Matching (EGM) [8, 16]. N
Both techniques rely on a priori information and learn how face mod- ~ Generally speaking, an appearance based face recognition system
els for the frontal view are related to face models at a non-frontalcan be thought of as being comprised of:
view. The synthesis and augmentation approach is evaluated by 1. Face localization and segmentation
applying it to two face verification systems: Principal Component 2. Normalization
Analysis (PCA) based and DCTmod2 based; the two systems are a 2 Eleatu_r e extraction
) o o - . Classification

representation of holistic and non-holistic approaches, respectively.

Results from experiments on the FERET database suggest th&he second stage (normalization) usually involves an affine transfor-
in almost all cases, frontal model augmentation has beneficial efmation (to correct for size and rotation), but it can also involve an il-
fects for both systems; they also suggest that the LinReg technigligmination normalization (however, illumination normalization may
(which is based on multivariate regression of classifier parameters) i§iot be necessary if the feature extraction method is robust). In this
more suited to the PCA based system and that the UBMdiff techniqué@per we shall concentrate on the last stage (and thus postulate that
(which is based on differences between two general face models) e preceding steps have been performed correctly).
more suited to the DCTmod2 based system. The results also sup- Some approaches to addressing the single training image prob-
port the view that the standard DCTmod2/GMM system (trained oném involve the synthesis of new face images (at various angles)
frontal faces) is less affected by out-of-plane rotations than the correbased ora priori information (e.g. [2, 21]). In these approaches,
sponding PCA/GMM system; moreover, the DCTmod2/GMM systeifie image synthesis comes before the usual step of feature extraction.
using augmented models is, in almost all cases, more robust than tiiée obvious question is: if we're only interested in recognition and

corresponding PCA/GMM system. thus we’re going to extract features from synthesized images, why
not synthesize the features instead? If we follow this line of thinking,
1.Introduction a natural followup question is: instead of synthesizing features with

... which we're going to train a classifier, why not directly synthesize
In the context ofrontal faces, recent approaches to face recognitiony,o c|assifier's parameters? This is in fact the crux of our proposed
(here we mean both identification and verification) are able to aChieV@xtensions sketched below.
very low error rates (e.g. [19]). A more realistic and challenging ' :

Ki . p ; Lvi h | ¢ | Usinga priori information in the form of a set of faces at different
task is to verify a face at a non-frontal view when only one (fronta )views (these faces will never be used during performance evaluation),

train\}\r;ﬁ_limar?e is aﬁl ai:‘ab_le (e_.gd a pazsport photo_g_raphrz ) b dwe construct face models for specific views (by “model” we mean a
lle the task of view-independent recognition has been a GMM); we then find thalifferencedetween the model for the frontal

dressed through the use of training images (for the person to be regz, and, say, the model for the° view. Let us now suppose that

_ognlzed) at mult_lp_le Views (e.g. [22]), _the much_ hard_er task of USiye wish to enroll a new client in our face verification system and we
ing only one training image has received relatively little attention

L2 h only have their frontal view; given a face model created from their
(.g. [2, 21]). While itis possible to use 3D approaches to addresg ) view, we can synthesize a model fa25¢ by applying the
the single training image problem (e.g. [1, 17]), here we concentratg o gifferences to the client's frontal model. In order for the
lon exten(_:illlng tWOdWﬁ” under_stolod 2D based tecr:mques. In %art'CLEystem to automatically handle the two views, we then augment the
ar, we will extend the Principal Component Analysis (PCA) basedjiens frontal model by concatenating it with the newly synthesized
approach (due to its ubiquitousness) [30] and the recently Proposegse model. We can of course repeat this procedure for other views.
DCTmod2 based approach [29]. In both cases we employ a Gaussian e hronosed synthesis and augmentation approach thus differs

Mixture Model (GMM) based classifier [25], which is central to our from the approach presented in [2, 21] where actual face images for

extensions. . Lo . .
. . non-frontal views were synthesized; the synthesized images shown
The PCA/GMM system is an extreme example of a holistic sys- 4 y J

] . o in [2] have considerable artefacts, which can lead to a decrease in
tem where the spatial relation between face characteristics (such Berformance. The proposed approach is somewhat related to [18]

the eyes and nose) is rigidly kept (with the advantage of robusty -« 4 feature transformation approach is employed in the context

ness to compression artefacts & additive noise [28]). Conversely, th@f an EGM based classifier. We note that in [18] manual intervention

The authors thank the Swiss National Science Foundation for supportinf$ Fequired, while our proposed approach is automatic; moreover, un-
this work through the National Center of Competence in Research (NCCRjke [18], our approach is based in a statistical framework. The aug-
on Interactive Multimodal Information Management (IM2). mentation part of our proposed approach is related to [14]; the main




Fig. 2. Extracted face windows from images in Fig. 1.
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ifference being that in [14] features from the client’s maegl im- 5 SEE 2
ages are used to extend the client’s face model, while in our proposed 5 601 1
approach we synthesize the models to represent the face of a client at Vi 5585 10

various non-frontal angles, without having access to the client’s real

Images. Table 1. Number of DCTmod2 feature vectors extracted from a
The rest of the paper is organized as follows. In Section %6x64 face usingVp=8 and varying overlap; also shows the effec-
we briefly describe the database used in the experiments and tlige spatial width (& height) in pixels for each feature vector.
pre-processing of the images. In Sections 3 and 4 we overview
the DmeodZ gnd PCA pased featurle extractjon techniques, '3 Feature Extraction: DCTmod2 Based Sys.
spectively. Section 5 provides a concise description of the GMM ) ) ) ]
based classifier and the different training strategies used when ded DCTmod2 feature extraction [29] a given face image is analyzed
ing with DCTmod2 and PCA based features. In Section 6 we deon @ block by block basis; each block r xNp (here we use
scribe two techniques used for synthesizing non-frontal models a&’»=8) and overlaps neighboring blocks B pixels. Each block is
well as a method to address the problem of correspondence betwe@composed in terms of 2D Discrete Cosine Transform (DCT) basis
two GMMs. Section 7 details the process of Concatena’[ing two OFUnCUOnS [13] A feature vector for each block is then constructed
more GMMs. Section 8 is devoted to experiments evaluating the twS:
synthesis techniques and the use of augmented models. The paper is T
concluded and future work is suggested in Section 9. = [AhCO Neg Aoy Ney Nex Aes es ey ... CM—l] 1)

) . wherec,, represents the-th DCT coefficient, whileAc,, and A%,
2.FERET Database: Setup & Pre-Processing represent the horizontal & vertical delta coefficients respectively; the

In our experiments we utilized face images from the FERET.de"aS are computed using DCT coefficients extracted from neighbor-

database [23]. In particular, we used images fromtihebb, bc ing blocks. Compareq to traditional DCT featu_re extract_ion [1Q], the
bd, be bf, by bh andbi subséts which represent views of ’zoo’per_flrst threg DCT coefﬁuents are replaced by their respective _horlz_ontal
sons for ('apﬁroximately()o (front’aI) 160°. +40°. +25° +15°. -15° and vertical deltas in order to reduce the effects of illumination direc-

o o o L, ’ ' ’ ’ ' . tion changes, without losing discriminative information. In this study
-25°, -40° and 60°, respectively; thus for each person there are NiN& o usel/=15 (choice based on [29]), resulting in & dimensional
images. Example images are shown in Fig. 1. feature vector for each block ’

The 200 persons were split into three disjoint groups: group A, The degree of overlap\o) has two effects: the first is that as
group B and impostor group; the impostor group is comprised of 2Qy 14 s increased the spatial area used to derive one feature vector
persons, resulting in 90 persons in groups A and B. Throughout thg qecreased: the second is that as the overlap is increased the num-
experiments, group A is used as a sourca pfiori information while o of feature vectors extracted from an image grows in a quadratic
the impostor group and group B are used for verification tests (i.&nanner, Table 1 shows the amount of feature vectors extracted from

clients come from group B). Thus in each verification trial there is 90s¢ . 64 face using our implementation of the DCTmod2 extractor.

true claimant accesses and-@0=1800 impostor attacks; moreover, — ag il be shown later, the larger the overlap (and hence the
;gépnzaqg verification trial the view of impostor faces matched thegmaier the spatial area for each feature vector), the more the system
ing view.

o o is robust to out-of-plane rotations.
In order to reduce the effects of variations possible in real

life (such as facial expressions, hair styles, clothe_s and ornamenta)_ Feature Extraction: PCA Based System

closely cropped faces are used instead of full face images [5]. In par- ) i i )

ticular, we used the location of the eyes to normalize the inter-oculai? PCA based feature extraction [30], a given face image is repre-
distance and extract a 5®4 (rowsx columns) face window con- sented by a matrix containing grey level pixel values; the matrix is

taining the area from the eyebrows to the nose (inclusive). Examplthen converted to a face vectgr, by concatenating all the columns;

face windows are shown in Fig. 2. a D-dimensional feature vectaf, is then obtained by:
Since in this paper we are proposing extensions to existing 2D ap- . e
proaches, we obtain normalized face windows for non-frontal views E=U"(f-fu) 2

exactly in the same way as for the frontal view; this has a significant . ) .
side effect: for large deviations from the frontal view (such@ae-  Where'U containsD eigenvectors (corresponding to ttig largest

and #60°) the effective size of facial characteristics is significantly €igenvalues) of the training data covariance matrix, #nds the
larger than for the frontal view. The non-frontal face windows thusmean of training face vectors. In our experiments we use frontal faces
differ from the frontal face windows not only in terms of out-of-plane from group A to findU and f.. If robustness to illumination changes
rotation of the face, but also scale. is required, an extension such as enhanced PCA can be utilized [28].



It must be emphasized that in the PCA based approach, one fea- The UBM and all client models (for frontal faces) are con-
ture vector represents the entire face, while in the DCTmod2 apstrained to have only one component (i.e. one Gaussian). As for the
proach one feature vector represents only a small portion of the fac®CTmod?2 system (described above), the parameters for the UBM are

found by running the EM algorithm on all data from group A. Instead
5.GMM Based Classifier of MAP estimation, each client model inherits the covariance matrix
from the UBM; moreover, the mean of each client model is taken to

The distribution of training feature vectors for each person is modele . B .
e the single training vector for that client.

by a GMM. Given a claim for clienC’s identity and a set of (test)
feature vectorsX = {fi}ﬁv:"l supporting the claim, the average log i _ -
likelihood of the claimant being the true claimant is found with: 6. Synthesmng Models for Non-Frontal Views

6.1. UBMdiff Technique

1 Ny - o +25° .
L(X|Ao) = o Zv_l log p(Zi|Ac) (3)  Let us suppose that we have two UBME), , and \}2>° (trained
v usinga priori data) that describe a general face for a view‘aand
where: p(E|\) = ZNC w; N (Z; i, ) (4)  +25°%, respectively. Let us define the set of parameters which de-
J=1 scribes the difference between the two UBMs as:
_ 7. 2 Na
A= {wi i B1S ®) +25° +25° 250 4250 | VG
A =193 WA, » HAi 5 OAGi ) 9
Here, NV (#; i, 2) is a D-dimensional Gaussian function with mean i=1
i1 and diagonal covariance mati: The parameters are defined as:
1 1 B +25¢ _  +25° 0%
N(@RB) =5 exp(—2 @ p)'s @ - ﬁ)) (®) WA = Wi/ Wabi (10)
(271—) : |2‘ : ﬁA?? = ﬁub%i,,i - ﬁ?l,bm,i (11)

Ac is the parameter set for cliedt, N¢ is the number of Gaussians (5+2;°)T = loasal?, = [E+250_ /=0 }D (12)

anduw; is the weight for Gaussiay (with constraintsy” ¥ w; = 1 o4 Abd la=1 ubm, i, (d,d)/ Subm.i,(did) | ;_y

andV j : w; > 0). +a50 )
Given the average log likelihood of the claimant being an imposWhereX i, ; (a,a) denotes the element at rawand column (i.e.

tor, L(X|Ag), an opinion on the claim is found using: d-th diagonal) ole:f,?:i. Since the two UBMs are a good represen-
tation of a general face at the two views, and each client model is
A(X) = L(X[Ao) — L(X]Xg) (7)  derived from thed® UBM, it is reasonable to assume that we can ap-

ply the above difference to cliedt’s 0° model to synthesize a25°

The verification decision is reached as follows: given a threshold model. Formally, the parameters for the5¢ model are:

the claim is accepted whek(X') > ¢ and rejected wheA(X) < t.
In our experiments we use a global threshold to obtain performance
as close as possible to the Equal Error Rate (EER) (i.e. where the
false rejection rate is equal to the false acceptance rate), followin
the popular practice used in the speaker verification field [7, 11].

N,

+25° +25° +25° (250 C

Ac =Wc,i ,HC,i 720,2' } L (13)
i=

gnd are synthesized using:

Methods for obtaining the parameter set for the impostor model Wi _ &]\+25°/ (14)
(\g) and each client are described in the following sections. Ca = Wou /7
_+25° _ 50° —+25°
Hei = et HaG (15)
5.1.Classifier Training: DCTmod2 Based System 4950 |D 0° +o50
. . . . . 35 = 3¢, oA (16)
First, a Universal Background Model (UBM) is trained with a form of Ciy(dd) | Ci(dd)PAid|
the Expectation Maximization (EM) algorithm [6, 9] usialj 0° data Y
from group A; here the EM algorithm tunes the model parameters t#here the non-diagonal elements3§2*” are set to zero and
optimize the Maximum Likelihood (ML) criterion (i.e. so that the +250 00 4250
likelihood of the training data is maximized). Wei = Woi WA, (17)
The parameters\] for each client model are then found by using Ng
the client’s training data and adapting the UBM (the number of Gaus- v o= @g?;“ (18)
sians is varied in the experiments); the adaptation is accomplished i1

using a different form of the EM algorithm, often referred to as max- . .
imum a posteriori(MAP) estimation [12, 25]. The two instances of As can be seen, theis a scale factor used to ensure that synthesized

the EM algorithm are summarized in appendixes A and B. weights sum to unity. We can of course use the above procedure to

Since the UBM is a good representation of a general face, it iSYNthesize models for angles other tha5:
also used to find the likelihood of the claimant being an impostor,

e 6.2.LinReg Technique
L(X|Ag) = L(X | Aubm) (8) Let us suppose that we have the following multi-variate linear regres-
sion model:
5.2.Classifier Training: PCA Based System Y=XB (19)
The image subset from the FERET database that is utilized in this —T 27 1
) = Y1 Ty B, Ba,p)

work has only one frontal image per person; in PCA-based feature ~ T =T

¢ ) ; L X 7o Ty 1 B2,1) B2,D)
extraction, this results in only one training vector, leading to neces- i — ) i . i (20)

sary constraints in the structure of the classifier and the classifier’s : : : : :
training paradigm. 7T | Bio+1,1y -+ Bo+1,p)



wheren > D + 1, with D being the dimensionality of eaghandZ. from a particular “parent Gaussian” through the process of adapta-
B is a matrix of unknown regression parameters; under the sum-ofion. moreover, let us define the distance between two Gaussians as

least-squares regression criteri@can be found using [15]: the Mahalanobis distance [9] between their means:
-1 M (fia, fiv) = (fla — fiv)" Sy (o — fiv) (25)
B= (XTX) xTy (1) _ _ "
whereX;; is the overall covariance matrix of the “parent UBM”; we

shall assume that it is a diagonal matrix. It can be shown thai-the

Given a set ofa priori models (from group A), representing faces at . - :
P ( group A), rep 9 glagonal elementX;; (4,4)) is found using:

0° and +25°, we can thus find the relation between the means (an

diagonal covariances) for the two angles; specifically, we g Ng

andBsx; (i=1,2;--,Ng). We can then synthesize model parameters Xl (d,d) = —uiu,(d) + Z w; (Ei,(d,d) + Ni,(d)) (26)

for +25° [c.f. Egn. (13)] from clieniC"s 0° model using: i=1

+o50 00 wherepq;, (q) is thed-th element ofi,i;, which is in turn found using
we. - Wou (22) T = N6 wijt; H )l D e th ts of th
4950 00 T Bau = Y5 wifli. Here {w, [i;, 3;} ;.S are the components of the
fici = [(dci) 1]Bu (23)  “parent UBM".
diag(EZ?f’o) _ [diag(Eoco,i)T 1]Bx. (24) Lastly, let us define a measure which will be used for check-

ing whether any “child Gaussian” is closer to someone else’s parent

where the non-diagonal elementsﬁﬁ?fo are set to zero. It must rather than its own parent:

be noted that unlike the UBMdiff technique (Section 6.1), there is no
guarantee that the diagonal elementsSR?>” are> 0; thus after _ - child - parent  child — parent
synthesis, any diagonal elements which dre) are set to a small v = Z ZS kM 0 ) = MU 1 ))
positive value {~2°). By the same token, the weights for thg5® i=1J=1

Ng Ng

model are merely copied from t19& model (while this seems drastic, —2Ng (27)
the weights have only a minor influence on performance [25]). wherek > 1 and

S(a) :{ +1 if a>0 (28)
6.3. The Model Correspondence Problem -1 if a<o0

The UBMdiff and LinReg synthesis techniques pre-suppose that therg jesignates how close a “child Gaussian” can be to someone else’s
Is a correspondence between components of the clightidel, the  5rent- ifk=2, then it is closer than two times the distance between
_0 UBM, the +25° UBM and all models for group A (Ioosely speak- the parent in question and the parent's true child.

ing, by correspondence we mean that corresponding components In' 15 54dress the “wandering” problem we modify the EM algo-

all three quels descrlbg th.e same areas of the face). This is 'Yghm for MAP estimation (shown in Appendix B) by introducing an
when there is one Gaussian in each model (as for the PCA based sy stopping criterion: from the second iteration onwards, we check
tem). However, under traditional training paradigms (as describegt > 2 after each maximization step: if the condition is satisfied
in Section 5.1), this is generally not true when there is two or morgy e restore the parameters from the last iteration and deem that we
Gaussians. . . . __have converged. The check is enabled from the second iteration on-
_ To address this issue, we propose the following modified trainy,,rys since we wish at least for some adaptation to occur (otherwise
ing paradigm. Instead of training the3” UBM directly using the i \y1d be possible for the “child UBM” to be the same as the “par-

ML criterion, we instead adapt th# UBM using a modified form ., UBM"). In this work we uset=2 (choice based on preliminary
of MAP estimation; moreover, whenever adapting any client mOdeExperiments).

from any UBM, the modified MAP estimation is also used.

Traditional MAP estimation by itself will not help with the corre- ;
spondence problem, as for GMMs it is a form of probabilistic cluster-7' Augm_entmg Frontal _MOdeIS ) )
ing (albeit constrained clustering). During clustering, the Gaussiand composite model for client’ is created by augmenting the client's
tend to “wander” around before converging to a solutiowe il-  frontal model @) as follows:
lustrate the wandering problem as follows: let's say we have a 32 AGUg — \0% |\ F60% | | \FA0% o403 -60°
Gaussiard)® UBM and we adapt it to create 23° UBM; after con- c ¢ =7 ¢ © ©
vergence, it is quite possible for, say, the tenth Gaussian of26& + = LUieade (29)
UBM to be the “closest” to the first Gaussian of e UBM; more-
over, it is also possible to have more than one Gaussian in1be +
UBM that is the “closest” to a given Gaussian in thfeUBM. Due A ={0%+60%,+40°,+25%, +15°,-15%,-25°,-40°,-60° }  (30)

to the “wandering” problem, there is no guarantee that the first Gaussnqy | is an operator for joining GMM parameter sets. Let us suppose
sian from the 25° UBM corresponds to the first Gaussian from the \ye have two GMM parameter sets, and.\,, comprised of param-

0% UBM (or in other words, the first Gaussian from the5® UBM  eters forN,  and N, ¢ Gaussians, respectively. Theoperator is
may be modeling a completely different area of the face when comgefined as follows:

pared to the first Gaussian from the UBM).
Before describing the modification to the MAP estimation, let us Az = Az LI Ay

where

i i “ ” “chi - N _ N,
first cieflne a “parent UBM” as the UBM to.be agapted and a (;hlld = {0Wa i, flais Saibi U {Bwyi, fiyi, Syi}nk® (31)
UBM” as the UBM that resulted from adapting a “parent UBM”; in a .

similar vein, let us define a “parent Gaussian” as a Gaussian from théhere: a = Nic/(Ne+ Nyc) (32)
“parent UBM" and a “child Gaussian” as the Gaussian that resulted 8 = l—a (33)

11t must be noted that this observed behaviour is counter-intuitive; it isHere the non-frontal models can be synthesized from the client’s
under further investigation. frontal model using the UBMdiff or LinReg techniques (Section 6).
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Fig. 3. Performance of PCA based system (trained on frontal facedyig. 4. Performance of various PCA based systems: standard,

for increasing dimensionality and the following angle€0*, -40°,
-25°, -15° and0° (frontal).

UBM(diff, LinReg and augmented; the standard system used origi-
nal frontal client models only; UBMdiff and LinReg systems used

client models synthesized specifically for a given test angle; the aug-
mented system used client models comprised of original frontal and

8. Experiments and Discussion synthesized side models (via LinReg technique).

8.1.PCA Based System

In the first experiment we studied how the dimensionality of the fea-
ture vectors used in the PCA system affects robustness to varying
pose. The higher the dimensionality, the more accurately the face
image is represented; we conjecture that as more accurately the facew
is represented, the more the system will be affected by varying pose.
Client models were trained on frontal faces and tested on faces fromg s
-60° to +60° views; impostor faces matched the testing view. Results & ,
for -60° to 0° are shown in Fig. 3 (the results f6f to +60°, not 2
shown here, have very similar trends). o

As can be observed, a dimensionality of 40 is required to achieve
perfect verification on frontal faces (this agrees with results presented
in [26]). For non-frontal faces at60° and+40°, the error rate gen-
erally increases as the dimensionality is increased, saturating when
the dimensionality is about 15; hence there is somewhat of a trade- OVERLAP
off between the error rate on frontal faces and non-frontal faces, cor=i9. 5. Performance of standard DCTmod2 based system trained and
trolled by the dimensionality. Since in this work we are pursuingtésted on frontal faces, for varying degrees of overlap and number of
extensions to standard 2D approaches, the dimensionality has beERussians.
fixed at 40 for further experiments (using a lower dimensionality of,
say, 4, offers better (but still poor) performance for non-frontal faces
however '.t comes at the a CO.St of an EER pf apout 10% on fronte\I_inReg technique uses information from two covariance matrices in-
faces, which is unacceptable in real life applications). stead of 180.

In the second experiment we evaluated the performance of mod- |, the third experiment we augmented each client’s frontal model
els synthesized using UBMdiff and LinReg techniques; The clientith models (for the eight non-frontal views) synthesized by the
models were synthesized for a given test angle; this pre-supposes tri_"i‘ttwReg technique; since each frontal model was constrained to have
we know what the test angle & priori, but is nevertheless useful e Gaussian, each resulting augmented model had nine Gaussians.
for comparing performance with augmented models. As can be segfyom the results shown in Fig. 4, we can see that there is little differ-
from the results presented in Fig. 4, both techniques perform befsnce petween using client models specifically synthesized for a given
ter than the standard system and the LinReg technique offers signifsst angle and the augmented models, which cover all the test angles.

icantly better performance than UBM(iff. We conjecture the reasoRrpege results thus support the use of frontal models augmented with
for the betterness of the LinReg technique as follows: the UBMd'ffsynthesized models.

technique only utilizes the difference between two general models,
while the LinReg technique utilizes the differences between two sets
of models (90 models for a frontal view and 90 models for a non-8-2-DCTmod2 Based System

frontal view); in effect, the LinReg technique utilizes more informa- In the first experiment we studied how the overlap setting in the
tion than the UBMdiff technique (in the form of 180 mean vectorsDCTmod2 feature extractor and number of Gaussians in the classi-
instead of two) and is thus able to synthesize the non-frontal modfier affects performance & robustness. Client models were trained on
els more accurately. While the LinReg technique does not guarantdeontal faces and tested on face®atind +0° views; impostor faces

that valid covariance matrices will be generated, for the case of thenatched the testing view. Results are shown in Figs. 5 and 6.

PCA based system no such problem occurred; we conjecture that this As we can see, when testing with frontal faces, the general trend

is due to the constrained training strategy (Section 5.2), where clieris that as the overlap increases more Gaussians are needed to decrease

@
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models inherited their covariance matrix from the UBM; in effect the
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& modified training).

OVERLAP
Fig. 6. Performance of standard DCTmod2 based system trained
frontal faces and tested o8 faces, for varying degrees of overlap
and number of Gaussians.

modified MAP estimation reduces the error rate in almost all cases.
the error rate (which can be interpreted as follows: the smaller th&hese results thus suggest that the model correspondence problem
spatial area used by the features, the more Gaussians are requi(eldscribed in Section 6.3) is effectively addressed via the modified
to adequately model the face). When testing with non-frontal facesMAP estimation; the results also suggest that the UBMdiff technique
the general trend is that as the overlap increases, the lower the erigruseful for synthesizing models.

rate; there is also a less defined trend when the overlap is 4 pixels |n the fourth experiment we evaluated the use of the LinReg tech-
or greater: the more Gaussians, the lower the errof ratéhile not  nique for synthesizing models: results are presented in Fig. 8. It can
shown here, .the DCTmod2 based system obtained similar trends fgg seen that the performance is worse than the UBMdiff technique;
non-frontal views other than46°. _ _ _ a possible cause of this has been alluded in Section 6.2: there is no

The best performance for$° faces is achieved with an overlap guarantee that valid covariance matrices will be generated. Indeed,
of 7 pixels and 32 Gaussians, resulting in an EER close to 10%. Thiguring model synthesis it was found that many elements of the co-
is quite impressive. considering that the EER of the standard PCAariance matrices had negative values, and were thus set to a small
based system is around 35%; for the PCA system utilizing synthepositive value; this obviously has the effect of making any model less
sized models the EER is around 15%. The robustness of the standaﬁmacise, leading to worse performance.

DCTmod2/GMM system can be attributed to two aspects: In the fifth experiment we augmented each client's frontal model

1. The small spatial area (especially with an overlap of 7) usedvith models synthesized by the UBMdiff technique for the follow-
by each feature vector, results in out-of-plane rotations havingng angles:+60°, £40° and+25°. Synthesized models fat15°
a smaller effect on DCTmod2 features when compared to PCAvere not used since they provided no performance benefit over the
based features (which describe the entire face). 0° model. Since each frontal model was set to have 32 Gaussians,
2. The loss of spatial relation between face characteristics (duéach resulting augmented model had 224 Gaussians. From the results
to use of the GMM classifier), resulting in the “movement” shown in Fig. 8, we can see that there is little difference between us-
of facial characteristics (due to out-of-plane rotations) having
relatively little effect. 25

' ' ' ' A UBN;DIFF ‘
. . . ) -0 LINREG
For further experiments we have chosen the configuration of 7 pixel

overlap and 32 Gaussians. While this does not achieve perfect verifi-
cation rate on frontal faces, the EER is quite low at 1.67%; moreover, 4
as will be shown in the next experiment, the EER drops to 0% when

the modified MAP estimation is used (described in Section 6.3). 15

In the second experiment we evaluated the effects of modified £
MAP estimation. From the results presented in Fig. 7 we can see tha
utilizing the modified training has no adverse effects on the perfor-
mance when compared to original MAP estimation.

In the third experiment we evaluated the performance of mod-
els synthesized via the UBMdiff technique, using both original and
modified training. In order to provide a fair comparison with the
LinReg technique in later experiments, synthesis of weights was not oL — — — =
done; instead, the weights for non-frontal models were copied from ANGLE
the frontal model. As shown in Fig. 7, using original training cause
the UBMdiff technique to fall apart (the results are worse than th
standard approach); in contrast, using the UBMdiff technique wit

10

sk

L L L
15 25 40 60

SFig. 8. Performance of various DCTmod2 based systems: UBMdiff,
ﬁ_inReg and augmented; UBMdiff and LinReg systems used client
models synthesized specifically for a given test angle; the augmented
2This is true up to a point: eventually the error rate will go up as there wiIIS_VSIem_ used client models CQmp”SeF’ of original frontal and synthe-
be too many Gaussians to train adequately with the limited amount of data. Sized side models (via UBMdiff technique).




ing client models specifically synthesized for a given test angle ané less affected by out-of-plane rotations than the corresponding
the augmented models, which cover all the test angles. Like in thBCA/GMM system; moreover, except for the extreme views @i,
case for the PCA based system, these results support the use of frorttaé DCTmod2/GMM system using augmented models is more robust

models augmented with synthesized models. than the corresponding PCA/GMM system.
Currently in the DCTmod2/GMM approach each Gaussian often
8.3.PCA/GMM vs DCTmod2/GMM models disjoint face areas that are similar in texture (see Appendix A

Since in this work we have evaluated two significantly different face [27]). Th's may_not be optimal when dealing with out-of-plan(_e
ce rotations as different parts of face may very well undergo dif-

verification systems (PCA based and DCTmod2 based), it would b f L ¢ i Bett ¢ be obtained if th

interesting to compare their performance. The results shown in Fig. rent transtorma 'OTS'. 3 ter peaolrman_cde_ m@i €o .e;me : e_

(created by recycling some of the results from previous experiment§ aussians are constrained o modei non-disjoint areas, 1o some ex
nt this could be achieved by incorporating positional information in

suggest the following: _ each feature vector (i.e. augmenting each DCTmod2 vector with the
1. The standard DCTmod2/GMM system (trained on frontalrow and column of where it comes from); another possibility it to use
faces) is less affected than the corresponding PCA/GMM sysa 2D Hidden Markov Model (HMM) based classifier [10, 26] in place

tem. of the GMM (since a GMM can be considered to be a special case of
2. In almost all cases, frontal model augmentation has beneficiadn ergodic HMM).
effects for both systems. Finally we note that, in the context of generative models (such as

3. Except for the extreme views &60°, the DCTmod2/GMM  the GMM), there are probably more principled ways (than UBMdiff
system using augmented models is more robust than the coand LinReg) of utilizinga priori information; however, the tech-
responding PCA/GMM system. nigues presented here show that it's possible to effectively utilize

a priori information directly in the model domain, rather than in the

. image domain.

9.Conclusions and Future Work g

In this work we proposed to address the problem of non-frontaAppendix A. EM: Maximum Likelihood

face verification when only a frontal training image is available gjyen a set of training vectors( = {&;}, the GMM parameters
(e.g. a passport photograph) by augmenting a client’s frontal facta;\) are estimated using the Maximum I_ZiT<eIihood (ML) principle:

model with artificially synthesized models for non-frontal views. In
the framework of a GMM based classifier, two techniques were pro- A = arg max p(X|\) (34)
posed for the synthesis: UBMdiff and LinReg. Both techniques rely A

on a priori information and learn how face models for the frontal 1,4 egtimation problem can be solved using a form of the Expectation
view are related to face models at a non-frontal view. The Synthelvlaximization (EM) algorithm [6, 9]. The EM algorithm for GMMs
sis and augmentation approach was evaluated by applying it to tWWQ ;5 riseq of iterating two steps: teepectatiorstep, followed by
face verification systems: PCA basgd.and DCTmOd.Z pased, the t Re maximizationstep. GMM parameters generated by the previous
systems are a representation of holistic and non-holistic approacm?ﬁeration (\°!4) are used by the current iteration to generate a new set

respectively. , of parameters)), such that:
Experimental results suggest that in almost all cases, frontal
model augmentation has beneficial effects for both systems; they p(X|A") > p(xp\old) (35)

also suggest that the LinReg technique (which is based on mul-

tivariate regression of classifier parameters) is more suited to th&he process is usually repeated until convergence (the parameters

PCA based system and that the UBMdiff technique (which is basetlave not changed from one iteration to the next), or until the in-

on differences between two general face models) is more suited @ease in the likelihood after each iteration falls below a pre-defined

the DCTmod2 based system. The results also support the viettireshold, or until the number of iterations is equal to a pre-defined

that the standard DCTmod2/GMM system (trained on frontal facesinaximum. Reynolds [24] showed that the EM algorithm generally
converges in 10 to 15 iterations, with further iterations resulting in
only minor increases of the likelihoggd X |\); this has also been the

45 e authors’ experience with various types of data. In our implementa-
L O AUGMENTED PCA | tion we have therefore limited the number of iterations to 20. The
© 4 AUGMENTED DCTMOD2 algorithm is summarized as follows:
35+ 4
Expectation step:
30 1 fork=1,--- ,Ng: fori=1,--- Ny:
=25 ] wpN Ty ik, 2
i’ 2 lkz _ NGk ( l_l"k - k) (36)
i 20f" ] Zn=1 wnN(xi; Hn, E’ﬂ)
151\\\\\o © © ///// N fork:la"'7NG
N \m\ ;) | Ny
10 W \\\ o ////Z// L, = Zi:l lie,i 37)
5h \\\}:\\ o ///E'//,/ 1 wE = Lk/NV (38)
R LmT e N 1 Ny
P — — - eyl s s 0. = Zi s 39
60 40 25 15 ANgLE 15 25 40 60 Mk L Zi:l ki ( )
Fig. 9. Performance comparison of standard PCA, augmented PCA, S 1 Ny =T ~ AT 20
standard DCTmod2 and augmented DCTmod2. L (Zizl Lili ’“) — Hkf (40)



Maximization step: [6]

{we, fin, SrInC, = {0, i, Eetn s,

The initial estimate (i.e. the seed) is typically provided by the
k-means clustering algorithm [9]. It must be noted that the above
implementation of EM can also be interpreted as an unsupervised[B]
probabilistic clustering procedure, wifkic being the assumed num-

ber of clusters.

Appendix B. EM: MAP Estimation

The main difference between ML and MAP estimation is in the
use ofa prior distribution (f(\)) of the parameters to be estimated
[c.f. Eqn. (34)]:

41
(41) -

[9]
[10]

[11]

A = argmax p(XIA) F(N) (42)

[12]
The above estimation problem can be also solved using the EM
algorithm, albeit in a different form to the one described in Ap- [13]
pendix A; this form is often referred to as maximumposteriori
estimation [12, 25], and is summarized as follows. 4]

Given UBM parameters i, = {wx, fix, S}, and a set of
training feature vectors for a specific cliet¥, = {fi}f’:"l, the esti-
mated weights), meansilk), and covariances{;,) are found as
per Egns. (38)-(40). The maximization step (fo=1,--- , Ng) is
then defined as:

[15]

[16]
(43)
fir = iy + (1 — a)fik (44)
3= [a(flk + ﬁkﬁg) + (1—a)(§~3k + ﬁkﬁg))]—ﬁkﬁg (45)

wy = [oabg + (1 — a)wg] v
(17]

(18]

where~ is a scale factor to make sure the weights sum to one.
a= LijT is a data-dependent adaptation coefficidnt [s found us- [19]
ing Eqgn. (37)], where is a fixed relevance factor [25]; in our exper-
iments we used=256 (choice based on preliminary experiments).

As can be seen, the new parameters are simply a weighted suff®]
of a priori statistics and new statistics. Heke,can be interpreted
as the amount of faith we have in the new statistics. The choice of;;
a= Lff;r causes the adaptation of only the Gaussians for which there
is “sufficient” data; in other words, the MAP estimation approach
for finding GMM parameters should be robust to limited amount of [22]
training data.

Since the ML EM algorithm for GMMs is a form of unsupervised 53
probabilistic clustering, the MAP EM algorithm is also a form of
unsupervised probabilistic clustering, albeit it is constrained.

References [24]
[1] J. J. Atick, P. A. Griffin and A. N. Redlich, “Statistical Approach to
Shape from Shading: Reconstruction of Three-Dimensional Face Surf25]
faces from Single Two-Dimensional ImagefNeural Computation

Vol. 8, 1996, pp. 1321-1340.

D. Beymer and T. Poggio, “Face Recognition From One Example[26]
View”, Proc. 5th Int. Conf. Computer Vision (ICC\Gambridge, 1995,

pp. 500-507. [27]
R. Brunelli and T. Poggio, “Face Recognition: Features versus
Templates”,IEEE Trans. Pattern Analysis and Machine Intelligence [28]
Vol. 15, No. 10, 1993, pp. 1042-1052.

F. Cardinaux, C. Sanderson and S. Marcel, “Comparison of MLP
and GMM Classifiers for Face Verification on XM2VTSProc. 4th

Int. Conf. Audio- and Video-Based Biometric Person Authentication [29]
(AVBPA) Guildford, 2003, pp. 911-920.

L-F. Chen, H-Y. Liao, J-C. Lin and C-C. Han, “Why recognition in a
statistics-based face recognition system should be based on the pUr8Q]
face portion: a probabilistic decision-based prod®attern Recogni-

tion, Vol. 34, No. 7, 2001, pp. 1393-1403.

(2]

(3]

(4]

(5]

A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithmJ, Royal Statistical Soc.,
Ser. B Vol. 39, No. 1, 1977, pp. 1-38.

G. R. Doddington, M. A. Przybycki, A. F. Martin and D. A. Reynolds,
“The NIST speaker recognition evaluation - Overview, methodol-
ogy, systems, results, perspectiv€peech Communicatipivol. 31,
No. 2-3, 2000, pp. 225-254.

B. Duc, S. Fischer and J. Big, “Face Authentication with Gabor Infor-
mation on Deformable GraphdEEE Trans. Image Processingol. 8,

No. 4, 1999, pp. 504-516.

R. O. Duda, P. E. Hart and D. G. StorRattern ClassificationJohn
Wiley & Sons, USA, 2001.

S. Eickeler, S. Niller and G. Rigoll, “Recognition of JPEG Compressed
Face Images Based on Statistical Methodisiagge and Vision Comput-
ing, Vol. 18, No. 4, 2000, pp. 279-287.

S. Furui, “Recent Advances in Speaker Recogniti®ttern Recogni-
tion Letters Vol. 18, No. 9, 1997, pp. 859-872.

J.-L. Gauvain and C.-H. Lee, “Maximum a Posteriori Estimation for
Multivariate Gaussian Mixture Observations of Markov ChaitBEE
Trans. Speech and Audio Processikgl. 2, No. 2, 1994, pp. 291-298.
R. C. Gonzales and R. E. Wood3igital Image ProcessingAddison-
Wesley, Reading, Massachusetts, 1993.

R. Gross, J. Yang and A. Waibel, “Growing Gaussian Mixture Mod-
els for Pose Invariant Face RecognitioRfpc. 15th Int. Conf. Pattern
RecognitionBarcelona, 2000, pp. 1088-1091 (Vol. 1).

D.-Y. Huang and K.-C. Liu, “Some variable selection procedures in
multivariate linear regression modelsJ,, Statistical Planning and In-
ference Vol. 41, 1994, pp. 205-214.

M. Lades, J. C. Vorhiggen, J. Buhmann, J. Lange, C. v.d. Malsburg,
R. P. Wirtz and W. Konen, “Distortion Invariant Object Recognition
in the Dynamic Link Architecture”|EEE Trans. Computersvol. 42,

No. 3, 1993, pp. 300-311.

M. W. Lee and S. Ranganath, “Pose-invariant face recognition using
a 3D deformable model™Pattern RecognitionVol. 36, No. 8, 2003,
pp. 1835-1846.

T. Maurer and C. v.d. Malsburg, “Learning Feature Transformations to
Recognize Faces Rotated in DeptRtoc. Int. Conf. Atrtificial Neural
Networks (ICANN)Paris, 1995, pp. 353-358.

K. Messer et al., “Face Verification Competition on the XM2VTS
Database”Proc. 4th Int. Conf. Audio- and Video-Based Biometric Per-
son Authentication (AVBPAuildford, 2003, pp. 964-974.

B. Moghaddam and A. Pentland, “Probabilistic Visual Learning for Ob-
ject RepresentationlEEE Trans. Pattern Analysis and Machine Intel-
ligence Vol. 19, No. 7, 1997, pp. 696-710.

P. Niyogi, F. Girosi and T. Poggio, “Incorporating Prior Information in
Machine Learning by Creating Virtual Example&roceedings of the
IEEE, Vol. 86, No. 11, 1998, pp. 2196-2209.

A. Pentland, B. Moghaddam and T. Starner, “View-Based and Modular
Eigenspaces for Face Recognitiofftoc. Int. Conf. Computer Vision
and Pattern RecognitigrSeattle, 1994, pp. 84-91.

P. J. Phillips, H. Moon, S. A. Rizvi and P. J. Rauss, “The FERET Eval-
uation Methodology for Face-Recognition Algorithm$EEE Trans.
Pattern Analysis and Machine Intelligenc¥ol. 22, No. 10, 2000,
pp. 1090-1104.

D. A. Reynolds, “A Gaussian Mixture Modeling Approach to Text-
Independent Speaker IdentificatioriTechnical Report 967Lincoln
Laboratory, Massachusetts Institute of Technology, 1993.

D. Reynolds, T. Quatieri and R. Dunn, “Speaker Verification Using
Adapted Gaussian Mixture Modeldjgital Signal Processingvol. 10,

No. 1-3, 2000, pp. 19-41.

F. SamariaFace Recognition Using Hidden Markov Modd®hD The-
sis, University of Cambridge, 1994.

C. Sanderson, “Face Processing & Frontal Face Verification”,
IDIAP-RR 03-20, Martigny, Switzerland, 2003. (se®w.idiap.ch

C. Sanderson and S. Bengio, “Robust Features for Frontal Face Au-
thentication in Difficult Image ConditionsRroc. 4th Int. Conf. Audio-
and Video-Based Biometric Person Authentication (AVBBAjldford,
2003, pp. 495-504.

C. Sanderson and K. K. Paliwal, “Polynomial Features for Robust Face
Authentication”, Proc. IEEE Int. Conf. Image ProcessinBochester,
2002, pp. 997-1000 (Vol. 3).

M. Turk and A. Pentland, “Eigenfaces for Recognitiod”,Cognitive
NeuroscienceVvol. 3, No. 1, 1991, pp. 71-86.



