
Available online via: http://dx.doi.org/10.1016/j.patcog.2005.07.001

On Transforming Statistical Models for
Non-Frontal Face Verification

Conrad Sanderson(*) (a) (b)

and

Samy Bengio(c)

and

Yongsheng Gao(d)

Version: 20 Aug 2005

(*) e-mail: conradsand.@.ieee.org, phone: +61 2 6125 8812, fax: +61 2 6125 8645
(a) National ICT Australia (NICTA), Locked Bag 8001, Canberra, ACT 2601, Australia
(b) Australian National University, Canberra, ACT 0200, Australia
(c) IDIAP Research Institute, Rue du Simplon 4, CH-1920 Martigny, Switzerland
(d) School of Microelectronic Engineering, Griffith University, QLD 4111, Australia

Abstract: We address the pose mismatch problem which can occur in face verification systems that have
only a single (frontal) face image available for training. In the framework of a Bayesian classifier based on
mixtures of gaussians, the problem is tackled through extending each frontal face model with artificially
synthesized models for non-frontal views. The synthesis methods are based on several implementations
of Maximum Likelihood Linear Regression (MLLR), as well as standard multi-variate linear regression
(LinReg). All synthesis techniques rely on prior information and learn how face models for the frontal
view are related to face models for non-frontal views. The synthesis and extension approach is evaluated
by applying it to two face verification systems: a holistic system (based on PCA-derived features) and a
local feature system (based on DCT-derived features). Experiments on the FERET database suggest that
for the holistic system, the LinReg based technique is more suited than the MLLR based techniques; for
the local feature system, the results show that synthesis via a new MLLR implementation obtains better
performance than synthesis based on traditional MLLR. The results further suggest that extending frontal
models considerably reduces errors. It is also shown that the local feature system is less affected by view
changes than the holistic system; this can be attributed to the parts based representation of the face, and,
due to the classifier based on mixtures of gaussians, the lack of constraints on spatial relations between
the face parts, allowing for deformations and movements of face areas.

Keywords: biometrics, pose mismatch, face recognition, local features, gaussian mixture model,
prior information, model synthesis.
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1. INTRODUCTION

Biometric recognition systems based on face images (here we mean both identification and verification

systems) have attracted much research interest for quite some time. Applications include surveillance,

forensics, transaction authentication, and various forms of access control, such as immigration

checkpoints and access to digital information [1, 2, 3, 4].

Contemporary approaches are able to achieve low error rates when dealing withfrontal faces (see for

example [5, 6]). In order to handlenon-frontalfaces, previously proposed extensions to 2D approaches

include the use of training images (for the person to be recognized) at multiple views [7, 8, 9]. In some

applications, such as surveillance, there may be only one reference image (e.g., a passport photograph)

for the person to be spotted. In a surveillance video (e.g. at an airport), the pose of the face is usually

uncontrolled, thus causing a problem in the form of a mismatch between the training and the test poses.

While it is possible to use 3D approaches to address the single training pose problem [10, 11], in this

paper we concentrate on extending two 2D based techniques. We extend a local feature approach (based

on DCT-derived features [12, 13]) and a holistic approach (based on PCA-derived features [14, 15]). In

both cases we employ a Bayesian classifier based on Gaussian Mixture Models (GMMs) [16, 17], which

is central to our extensions.

The PCA/GMM system is an extreme example of a holistic system where the spatial relations between

face characteristics (such as the eyes and nose) are rigidly kept. Contrarily, the DCT/GMM approach is

an extreme example of a local feature approach (also known as aparts basedapproach [13]). Here, the

spatial relations between face parts are largely not used, resulting in robustness to translations of the face

which can be caused by an automatic face localization algorithm [18, 19]. In between the two extremes

are systems based on multiple template matching [20], modular PCA [9], Pseudo 2D Hidden Markov

Models [21, 22, 23] and approaches based on Elastic Graph Matching [24, 25]. As an in-depth review of

face recognition literature is beyond the scope of this paper, the reader is directed to the following review

articles [26, 27, 28, 29]. Further introductory and review material about the biometrics field in general

can be found in [3, 30, 31, 32].

In general, an appearance based face recognition system can be thought of as being comprised of:

1. Face localization and segmentation

2. Feature extraction and classification

The first stage usually provides a size normalized face image (with eyes at fixed locations). Illumination

normalization may also be performed (however, it may not be not necessary if the feature extraction

method is robust to illumination changes). In this work we exclusively deal with the classification

problem, and postulate that the face localization step has been performed correctly. Recent reviews of

face localization algorithms can be found in [33, 34].

There are three distinct configurations of how a classifier can be used: theclosed set identification

task, theopen set identificationtask, and theverification task1 . In closed set identification, the job is

to assign a given face into one ofK face classes (whereK is the number of known faces). In open set

identification, the task is to assign a given face into one ofK + 1 classes, where the extra class represents

an “unknown” or “previously unseen” face. In the verification task the classifier must assign a given face

1verificationis also known asauthentication.
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into one of two classes: either the face is the one we are looking for, or it isn’t. The verification and open

set identification tasks represent operation in an uncontrolled environment [35], where any face could be

encountered. In contrast, the closed set identification task assumes that all the faces to be encountered are

already known.

In this paper, we propose to address the single training pose problem by extending each statistical

frontal face model with artificiallysynthesizedmodels for non-frontal views. We propose to synthesize

the non-frontal models via methods based on several implementations of Maximum Likelihood Linear

Regression (MLLR), as well as standard multi-variate linear regression (LinReg). MLLR was originally

developed for tuning speech recognition systems [36], and to our knowledge this is the first time it is being

adapted for face verification.

In the proposed MLLR-based approach, prior information is used to constructgenericface models

for different views. A generic GMM does not represent a specific person’s face - instead it represents

a population of faces, or interpreted alternatively, a “generic” face. In the field of speech based identity

verification, an analogous generic model is known as a world model and as a Universal Background

Model [17, 37]. Each non-frontal generic model is constructed bylearningandapplyinga MLLR-based

transformation to the frontal generic model. When we wish to obtain a person’s non-frontal model, we first

obtain the person’s frontal model via adapting [17] the frontal generic model; a non-frontal face model

is then synthesized by applying the previously learned transformation to the person’s frontal model. In

order for the system to automatically handle the two views, a person’s frontal model is extended by

concatenating it with the newly synthesized model. The procedure is then repeated for other views. An

interpretation of this procedure is shown in Fig. 1.

The LinReg approach is similar to the MLLR-based approach described above. The main difference is

that it learns a common relation between two sets of feature vectors, instead of learning the transformation

between generic models. In our case the LinReg technique is applicable only to the holistic system, while

the MLLR-based methods are applicable to both holistic and local feature based systems.

Previous approaches to addressing single view problems include the synthesis of newimagesat

previously unseen views; some examples are optical flow based methods [38, 39], and linear object

classes [40]. To handle views for which there are no training images, an appearance based face recognition

system could then utilize the synthesized images. The proposed model synthesis and extension approach

is inherently more efficient, as the intermediary steps of image synthesis and feature extraction (from

synthesized images) are omitted.

The model extension part of the proposed approach is somewhat similar to [8], where features from

many real images were used to extend a person’s face model. This is in contrast to the proposed approach,

where the models are synthesized to represent the face of a person for various non-frontal views,without

having access to the person’s real images. The synthesis part is somewhat related to [41] where the “jets”

in the nodes an elastic graph are transformed according to a geometric framework. Apart from the inherent

differences in the structure of classifiers (i.e. Elastic Graph Matching compared to a Bayesian classifier),

the proposed synthesis approach differs in that it is based on a statistical framework.

The rest of this paper is structured as follows. In Section 2 we briefly describe the database used in

the experiments and the pre-processing of images. In Section 3 we overview the DCT and PCA based

feature extraction techniques. Section 4 provides a concise description of the GMM based classifier and
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the different training strategies used when dealing with DCT and PCA derived features. In Section 5

we summarize MLLR, while in Section 6 we describe model synthesis techniques based on MLLR and

standard multi-variate linear regression. Section 7 details the process of extending a frontal model with

synthesized non-frontal models. Section 8 is devoted to experiments evaluating the proposed synthesis

techniques and the use of extended models. Conclusions and future areas of research are given in

Section 9.

2. DATABASE SETUP AND PRE-PROCESSING

In our experiments we utilized a subset of face images from the FERET database [42]. Specifically, we

used images from theba, bb, bc, bd, be, bf, bg, bh andbi portions, which represent views of 200 persons

for approximately0o (frontal), +60o, +40o, +25o, +15o, -15o, -25o, -40o and -60o, respectively.

The 200 persons were split into three groups: group A, group B and an impostor group. There are 90

people each in group A and B, and 20 people in the impostor group. The class IDs for each group are

given in Appendix A. Example images are shown in Fig. 2. Throughout the experiments, group A is used

as a source of prior information while the impostor group and group B are used for verification tests. For

most experiments there are 90 true claimant accesses and 90×20=1800 impostor attacks per angle (with

the view of impostor faces matching the testing view). This restriction is relaxed in later experiments.

To reduce the effects of facial expressions and hair styles, closely cropped faces are used [43]; face

windows, with a size of 56 rows and 64 columns, are extracted based on manually found eye locations. As

in this paper we are proposing extensions to existing 2D approaches, we obtain normalized face windows

for non-frontal views in the same way as for the frontal view (i.e. the location of the eyes is the same in

each face window). This has a significant side effect: for large deviations from the frontal view (such as

-60o and +60o) the effective size of facial characteristics is significantly larger than for the frontal view.

The non-frontal face windows thus differ from the frontal face windows due to out-of-plane rotation of

the face and scale. Example face windows are shown in Fig. 3.

3. FEATURE EXTRACTION

3.1. DCT Based System

In this work we utilize the DCTmod2 feature extraction technique [12], which is a modified form of

DCT based feature extraction. First, a given face image is analyzed on a block by block basis; each

block isNP × NP (here we useNP =8) and overlaps neighbouring blocks byNO pixels. Each block is

decomposed in terms of orthogonal 2D Discrete Cosine Transform (DCT) basis functions [44]. A feature

vector for a given block is then constructed as:

x=
[

∆hc0 ∆vc0 ∆hc1 ∆vc1 ∆hc2 ∆vc2 c3 c4 ... cM−1

]T
(1)

where cn represents then-th DCT coefficient, while∆hcn and ∆vcn represent the horizontal and

vertical delta coefficients respectively. The deltas are computed using DCT coefficients extracted from

neighbouring blocks. Compared to standard DCT feature extraction [22], the first three DCT coefficients

are replaced by their respective horizontal and vertical deltas as a way of preserving discriminative
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information while alleviating the effects of illumination changes. Note that this feature extraction is only

possible when a given block has vertical and horizontal neighbours. In this study we useM=15 (choice

based on [12]), resulting in an18 dimensional feature vector for each block. A further study of this feature

extraction technique is given in [45].

The degree of overlap (NO) has two effects: the first is that as overlap is increased the spatial area

used to derive one feature vector is decreased (see Fig. 4 for an example); the second is that as the overlap

is increased the number of feature vectors extracted from an image grows in a quadratic manner. Table 1

shows the amount of feature vectors extracted from a56 × 64 face window using our implementation of

the DCTmod2 extractor. As will be shown later, the larger the overlap (and hence the smaller the spatial

area for each feature vector), the more the system is robust to view changes.

3.2. PCA Based System

In PCA based feature extraction [14, 15], a given face image is represented by a matrix containing grey

level pixel values. The matrix is then converted to a face vector,f , by concatenating all the columns.

A D-dimensional feature vector,x, is then obtained by:

x = UT (f − fµ) (2)

whereU containsD eigenvectors (corresponding to theD largest eigenvalues) of the training data

covariance matrix, andfµ is the mean of training face vectors. In our experiments we use frontal faces

from group A to findU andfµ.

It must be emphasized that in the PCA based approach, one feature vector represents the entire face

(i.e. it is a holistic representation), while in the DCT approach one feature vector represents only a small

portion of the face (i.e. it is a local feature representation).

4. GMM BASED CLASSIFIER

The distribution of training feature vectors for each person’s face is modeled by a GMM [12, 13, 17].

There is also a secondary model, the generic model, which models the distribution of a population of

faces, or interpreted alternatively, it represents “generic” face.

In the verification task we wish to find out whether a set of (test) feature vectors,X = {xi}NV
i=1,

extracted from an unknown person’s face, belongs to personC (which we will refer to as clientC) or

someone else (i.e. this is a two class recognition task). We first find the likelihood of setX belonging to

clientC with

P (X|λC) =
NV∏

i=1

P (xi|λC) (3)

where P (x|λ) =
∑NG

g=1 wg N (x|µg,Σg) and λ = {wg, µg,Σg}NG

g=1. Here, N (x|µ,Σ) is a

D-dimensional gaussian function with meanµ and diagonal covariance matrixΣ:

N (x|µ,Σ) =
exp

[− 1
2 (x− µ)T Σ−1(x− µ)

]

(2π)
D
2 |Σ| 12 (4)

λC is the parameter set for clientC, NG is the number of gaussians andwg is the weight for gaussiang

(with constraints
∑NG

g=1 wg = 1 and∀ g : wg ≥ 0). Secondly, we obtainP (X|λgeneric), which is the
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likelihood of setX describing someone else’s face (which we shall refer to as animpostor face).

A log-likelihood ratio is then found using

Λ(X|λC , λgeneric) = log P (X|λC)− log P (X|λgeneric) (5)

The verification decision is reached as follows: given a thresholdt, the setX (i.e. the face in

question) is classified as belonging to clientC when Λ(X|λC , λgeneric) ≥ t or to an impostor when

Λ(X|λC , λgeneric) < t. Note thatΛ(X|λC , λgeneric) can be interpreted as an opinion of how more likely

set X represents clientC ’s face than an impostor’s face, and hence can also be used in an open set

identification system. Methods for obtaining the parameter set for the generic model and each client

model are described in the following sections.

Note that in (3) each vector in the setX = {xi}NV
i=1 was assumed to be independent and identically

distributed [16, 46]. When using local features, this results in the spatial relations between face parts to

be not used, resulting in robustness to translations of the face [18, 19].

4.1. Classifier Training for the DCT Based System

First, the parameters for the generic model are obtained via the Expectation Maximization (EM)

algorithm [16, 17, 47], using all0o data from group A. Here, the EM algorithm tunes the model parameters

to optimize the maximum likelihood criterion. The parameters (λ) for each client model are then found

by using the client’s training data and adapting the generic model. The adaptation is traditionally done

using a form of maximuma posteriori(MAP) estimation [17, 48]. In this work we shall also employ the

MLLR model transformation approaches as adaptation methods. The choice of the adaptation technique

depends on the non-frontal model synthesis method utilized later (Section 6).

4.2. Classifier Training for the PCA Based System

The subset of the FERET database that is utilized in this work has only one frontal image per person. In

PCA-based feature extraction, this results in only one training vector, leading to necessary constraints in

the structure of the classifier and the classifier’s training paradigm.

The generic model and all client models for frontal faces are constrained to have only one component

(i.e. one gaussian), with a diagonal covariance matrix2. The mean and the covariance matrix of the generic

model are taken to be the mean and the covariance covariance matrix of feature vectors from group A,

respectively. Instead of adaptation (as done in the DCT based system), each client model inherits the

covariance matrix from the generic model. Moreover, the mean of each client model is taken to be the

single training vector for that client.

4.3. Error Measures

There are two types of errors that can occur in a verification system: a false acceptance (FA), which occurs

when the system accepts an impostor face, or a false rejection (FR), which occurs when the system refuses

2The assumption of a diagonal covariance matrix is supported by the fact that PCA derived feature vectors are

decorrelated [16, 46].
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a true face. The performance of verification systems is generally measured in terms of False Acceptance

Rate (FAR) and False Rejection Rate (FRR), defined as:

FAR =
number of FAs

number of impostor face presentations
(6)

FRR =
number of FRs

number of true face presentations
(7)

To aid the interpretation of performance, the two error measures are often combined into one measure,

called the Half Total Error Rate (HTER), which is defined as HTER = (FAR+FRR)/2. The HTER can be

thought of as a particular case of the Decision Cost Function (DCF) [49, 50]:

DCF = cost(FR)· P (true face) · FRR+ cost(FA)· P (impostor face) · FAR (8)

whereP (true face) is the prior probability that a true face will be presented to the system,P (impostor face)

is the prior probability that an impostor face will be presented,cost(FR)is the cost of a false rejection and

cost(FA) is the cost of a false acceptance. For the HTER, we haveP (true face)=P (impostor face)=0.5 and

the costs are set to 1.

A particular case of the HTER, known as the Equal Error Rate (EER), occurs when the system is

adjusted (e.g. via tuning the threshold) so that FAR = FRR on a particular dataset. We use a global

threshold (common across all clients) tuned to obtain the lowest EER on the test set, following the

approach often used in speaker verification [3, 50]3.

5. MAXIMUM LIKELIHOOD LINEAR REGRESSION

In the Maximum Likelihood Linear Regression (MLLR) framework [36, 52], the adaptation of a given

model is performed in two steps. In the first step the means are updated while in the second step the

covariance matrices are updated, such that:

P (X|λ̃) ≥ P (X|λ̂) ≥ P (X|λ) (9)

whereλ̃ has both means and covariances updated whileλ̂ has only means updated. The weights are not

adapted as the main differences are assumed to be reflected in the means and covariances.

5.1. Adaptation of Means

Each adapted mean is obtained by applying a transformation matrixWS to each original mean:

µ̂g = WSνg (10)

whereνg = [ 1 µT
g ]T andWS is aD× (D +1) transformation matrix which maximizes the likelihood of

given training data. ForWS shared byNS gaussians{gr}NS
r=1 (see Section 5.3 below), the general form

for findingWS is:

NV∑

i=1

NS∑
r=1

P (gr|xi, λ)Σ−1
gr

xiν
T
gr

=
NV∑

i=1

NS∑
r=1

P (gr|xi, λ)Σ−1
gr

WSνgrν
T
gr

(11)

3We note that the posterior selection of the threshold can place an optimistic bias on the results [51].
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where

P (g|xi, λ) =
wgN (xi|µg,Σg)∑NG

n=1 wnN (xi|µn,Σn)
(12)

As further elucidation is quite tedious, the reader is referred to [36] for the full solution ofWS .
Two forms ofWS were originally proposed: full and “diagonal” [36]. We shall refer to MLLR

transformation with a full transformation matrix asfull-MLLR. When the transformation matrix is forced
to be “diagonal”, it has the following form:

WS =

2
66664

w1,1 w1,2 0 · · · 0

w2,1 0 w2,3 · · · 0
...

...
...

. . .
...

wD,1 0 0 · · · wD,D+1

3
77775

(13)

We shall refer to MLLR transformation with a “diagonal” transformation matrix asdiag-MLLR. We
propose a third form of MLLR, where the “diagonal” elements are set to one, i.e.:

WS =

2
66664

w1,1 1 0 · · · 0

w2,1 0 1 · · · 0
...

...
...

. . .
...

wD,1 0 0 · · · 1

3
77775

(14)

In other words, each mean is transformed by adding an offset; thus Eqn. (10) can be rewritten as:

µ̂g = µg + ∆S (15)

where∆S maximizes the likelihood of given training data. This leads to the following solution:

∆S =

"
NSX
r=1

NVX
i=1

P (gr|xi, λ)Σ−1
gr

#−1 "
NSX
r=1

NVX
i=1

P (gr|xi, λ)Σ−1
gr

(xi − µgr )

#
(16)

The derivation for the above solution is given in Appendix B. We shall refer to this form of MLLR as

offset-MLLR.

5.2. Adaptation of Covariance Matrices

Once the new means are obtained, each new covariance matrix is found using [52]:

Σ̃g = BT
g HSBg (17)

where

Bg = C−1
g (18)

CgCT
g = Σ−1

g (19)

Here, Eqn. (19) is a form of Cholesky decomposition [53].HS , shared byNS gaussians{gr}NS
r=1, is

found with:

HS =

∑NS

r=1

{
CT

gr

[∑NV

i=1 P (gr|xi, λ)(xi − µ̂gr )(xi − µ̂gr )
T
]
Cgr

}

∑NV

i=1

∑NS

r=1 P (gr|xi, λ)
(20)
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The covariance transformation may be either full or diagonal. When the full transformation is used, full

covariance matrices can be produced even if the original covariances were diagonal to begin with. To

avoid this, the off-diagonal elements ofHS can be set to zero. In this work we restrict ourselves to

the use of diagonal covariance matrices to reduce the number of parameters that need to be estimated.

For full covariance matrices the dataset may not be large enough to robustly estimate the transformation

parameters, which could result in the transformed covariance matrices being ill-conditioned [52].

5.3. Regression Classes

If each gaussian is transformed individually, then for full-MLLR there areD2 + 2D parameters to

estimate per gaussian (i.e.D × (D + 1) parameters for each mean andD parameters for each

covariance matrix); for diag-MLLR, there areD + D + D = 3D parameters and for offset-MLLR there

areD + D = 2D parameters. Ideally each gaussian would have its own transform, however in practical

applications the training dataset may not be large enough to reliably estimate the required number of

parameters. One way of working around the small training dataset problem is to share a transform across

two or more gaussians [36, 52]. We define which gaussians are to share a transform by clustering the

gaussians based on the distance between their means.

We define a regression class as{gr}NS
r=1 wheregr is ther-th gaussian in the class; all gaussians in a

regression class share the same mean and covariance transforms. In our experiments we vary the number

of regression classes from one (all gaussians share one mean and one covariance transform) to 32 (each

gaussian has its own transform). The number of regression classes is denoted asNR.

6. SYNTHESIZING CLIENT MODELS FOR NON-FRONTAL VIEWS

6.1. DCT Based System

In the MLLR based model synthesis technique, we first transform, using prior information, the frontal

generic model into a non-frontal generic model for angleΘ. For full-MLLR and diag-MLLR, the

parameters which describe the transformation of the means and covariances areΨ = {Wg,Hg}NG
g=1,

while for offset-MLLR the parameters areΨ = {∆g,Hg}NG
g=1. Wg, ∆g andHg are found as described

in Section 5. When several gaussians share the same transformation parameters, the shared parameters are

replicated for each gaussian in question. To synthesize a client model for angleΘ, the previously learned

transformations are applied to the client’s frontal model. The weights are kept the same as for the frontal

model. Moreover, each frontal client model is derived from the frontal generic model by MLLR.

6.2. PCA Based System

For the PCA based system, we utilize MLLR based model synthesis in a similar way as described in the

previous section. The only difference is that each non-frontal client model inherits the covariance matrix

from the corresponding non-frontal generic model. Moreover, as each client model has only one gaussian,

we note that the MLLR transformations are “single point to single point” transformations, where the

points are the old and new mean vectors.
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As described in Section 4.2, the mean of each client model is taken to be the single training vector

available. Thus in this case a transformation in the feature domain is equivalent to a transformation in the

model domain. It is therefore possible to use transformations which are not of the “single point to single

point” type. Let us suppose that we have the following multi-variate linear regression model:

B = AW (21)


b T
1

b T
2

...

b T
N




=




1 a T
1

1 a T
2

...

1 a T
N







w1,1 · · · w1,D

w2,1 · · · w2,D

...
...

...

wD+1,1 · · · wD+1,D




(22)

whereN > D + 1, with D being the dimensionality ofa andb. W is a matrix of unknown regression

parameters. Under the sum-of-least-squares regression criterion,W can be found using [53]:

W =
(
AT A

)−1
AT B (23)

Compared to MLLR, this type of regression finds a common relation between twosetsof points; hence it

may be more accurate than MLLR. Given a set of PCA-derived feature vectors from group A, representing

faces at0o andΘ, we findW. We can then synthesize the single mean forΘ from clientC ’s 0o mean

using:

µΘ =
[

1 (µ0o

)T
]

W (24)

We shall refer to this PCA-specific linear regression based technique asLinReg. We note that for this

synthesis technique,(D+1)×D=D2+D parameters need to be estimated.

7. EXTENDING FRONTAL MODELS

In order for the system to automatically handle non-frontal views, each client’s frontal model is extended

by concatenating it with synthesized non-frontal models. The frontal generic model is also extended with

non-frontal generic models. Formally, an extended model is created using:

λextended = λ0o t λ+60o t λ+40o · · · t λ-40o t λ-60o

= ti∈Φλi (25)

whereλ0o

represents a frontal model,Φ is a set of angles, e.g.,Φ = { 0o, +60o, · · · , +15o, -15o, · · · , -60o },
andt is an operator for joining GMM parameter sets. Let us suppose we have two GMM parameter sets,

λx andλy, comprised of parameters forNx
G andNy

G gaussians, respectively. Thet operator is defined as

follows:

λz = λx t λy

=
{
αwx

g , µx
g , Σx

g

}Nx
G

g=1
∪ {

βwy
g , µy

g , Σy
g

}Ny
G

g=1
(26)

whereα = Nx
G/(Nx

G + Ny
G) andβ = 1− α.
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8. EXPERIMENTS AND DISCUSSION

8.1. DCT Based System

In the first experiment we studied how the overlap setting in the DCTmod2 feature extractor and number

of gaussians in the classifier affects performance and robustness. Client models were trained on frontal

faces and tested on faces at0o and +40o views; impostor faces matched the testing view. Traditional MAP

adaptation was used to obtain the client models. Results, in terms of EER (Section 4), are shown in Figs. 5

and 6.

When testing with frontal faces, the overall trend is that as the overlap increases more gaussians are

needed to decrease the error rate. This can be interpreted as follows: the smaller the area used in the

derivation of each feature vector, the more gaussians are required to adequately model the face. When

testing with non-frontal faces, the overall trend is that as the overlap increases, the lower the error rate.

There is also a less defined trend when the overlap is 4 pixels or greater: the more gaussians, the lower

the error rate4. While not shown here, the DCT based system obtained similar trends for non-frontal

views other than +40o. The best performance for +40o faces is achieved with an overlap of 7 pixels and

32 gaussians, resulting in an EER close to 10%. We chose this configuration for further experiments.

In the second experiment we evaluated the performance of models synthesized via the full-MLLR,

diag-MLLR and offset-MLLR techniques, for varying number of regression classes. Results are presented

in Tables 2 to 5. As can be observed, the full-MLLR technique falls apart when there are two or more

regression classes. Its best results (obtained for one regression class) are in some cases worse than for

standard frontal models. Frontal client models, obtained by using full-MLLR as an adaptation method,

resulted in an EER of 0% for frontal faces for all configurations of regression classes. Thus while the

full-MLLR transformation is adequate for adapting the frontal generic model to frontal client models, the

synthesis results suggest that the transformation is only reliable when applied to the specific model it was

trained to transform. Further investigation of the sensitivity of the full-MLLR transform, presented in

Appendix C, shows that the full-MLLR transform is easily affected by the starting point. We conjecture

that this is probably due to the training dataset being too small to robustly estimate the transformation

parameters.

Compared to full-MLLR, the diag-MLLR technique obtains lower EERs (Table 3). We note that the

number of transformation parameters for diag-MLLR is significantly less than for full-MLLR. The overall

error rate (across all angles) decreases as the number of regression classes increases from one to eight;

the performance then deteriorates for higher numbers of regression classes. The results are consistent

with the scenario that once the number of regression classes reaches a certain point, the training dataset is

too small to obtain robust transformation parameters. The best performance, obtained at eight regression

classes, is for all angles better than the performance of standard frontal models.

The offset-MLLR technique (Table 4) has the lowest EERs when compared to full-MLLR and

diag-MLLR. It must be noted that it also has the least number of transformation parameters. The overall

error rate consistently decreases as the number of regression classes increases from one to 32. The best

4This is true up to a point: eventually the error rate will go up as there will be too many gaussians to train adequately with the

small size of the training dataset. Preliminary experiments showed that there was little performance gain when using more than 32

gaussians.
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performance, obtained at 32 regression classes, is for all angles better than the performance of standard

frontal models.

8.2. PCA Based System

In the first experiment we studied how the dimensionality of the feature vectors used in the PCA based

system affects robustness to varying pose. Client models were trained on frontal faces and tested on faces

from -60o to +60o views; impostor faces matched the testing view. Results for -60o to 0o are shown in

Fig. 7 (results for +15o to +60o, not shown here, have very similar trends).

As can be observed, a dimensionality of at least 40 is required to achieve perfect verification on frontal

faces (this is consistent with the results presented in [23]). For non-frontal faces at±60o and±40o, the

error rate generally increases as the dimensionality increases, and saturates when the dimensionality is

about 15. Hence there is somewhat of a trade-off between the error rates on frontal faces and non-frontal

faces, controlled by the dimensionality. Since in this work we are pursuing extensions to standard 2D

approaches, the dimensionality has been fixed at 40 for further experiments. Using a lower dimensionality

of, say 4, offers better performance for non-frontal faces, however it comes at the cost of an EER of about

10% on frontal faces.

We note that the PCA based system (which is holistic in nature) is much more affected by view

changes than the DCT based system. This can be attributed to the rigid preservation of spatial relations

between face areas, which is in contrast to the DCT/GMM based approach, where the spatial relations

between face parts are very loose. The loose spatial relations allow for the deformations and movements

of face areas, which can occur due to view changes. Interestingly, recent empirical evidence suggests that

humans recognize faces by parts rather than in a holistic manner [54].

In the second experiment we evaluated the performance of models synthesized using LinReg and

MLLR-based techniques. As there is only one gaussian per client model, there was only one regression

class for MLLR techniques. Results in Table 6 show that model synthesis with full-MLLR and

diag-MLLR was unsuccessful. Since the LinReg technique works quite well and has a similar number of

free parameters as full-MLLR, we attribute the failure of full-MLLR and diag-MLLR to their sensitivity to

the starting point, which is described in Appendix C. While models synthesized by offset-MLLR exhibit

better performance than standard frontal models, they are easily outperformed by models synthesized via

the LinReg technique. This supports the view that “single point to single point” type transformations

(such as MLLR) are less useful for a system utilizing PCA derived features.

8.3. Performance of Extended Frontal Models

In the experiments described in Sections 8.1 and 8.2, it was assumed that the angle of the face is known.

In this section we progressively remove this constraint and propose to handle varying pose by extending

each client’s frontal model with the client’s synthesized non-frontal models.

In the first experiment we compared the performance of extended models to frontal models and models

synthesized for a specific angle; impostor faces matched the test view. For the DCT based system, each

client’s frontal model was extended with models synthesized by the offset-MLLR technique (with 32

regression classes) for the following angles:±60o, ±40o and±25o. Synthesized models for±15o were

not used since they provided little performance benefit over the0o model (see Table 5). The frontal generic
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model was also extended with non-frontal generic models. Since each frontal model had 32 gaussians,

each extended model had 224 gaussians. Following the offset-MLLR based model synthesis paradigm,

each frontal client model was derived from the frontal generic model using offset-MLLR.

For the PCA based system, model synthesis was accomplished using LinReg. Each client’s frontal

model was extended for the following angles:±60o, ±40o, ±25o and±15o. The frontal generic model

was also extended with non-frontal generic models. Since each frontal model had one gaussian, each

extended model had nine gaussians.

As can be seen in Tables 7 and 8, for most angles only a small reduction in performance is observed

when compared to models synthesized for a specific angle. These results suggest that the model extension

approach could be used instead of selecting the most appropriate synthesized model (via detection of the

face angle), thus reducing the complexity of a multi-view face verification system.

In the first experiment impostor attacks and true claims were evaluated for each angle separately. In the

second experiment we relaxed this restriction and allowed true claims and impostor attacks to come from

all angles, resulting in90× 9 = 810 true claims and90× 20× 9 = 16200 impostor attacks; an overall

EER was then found. For both DCT and PCA based systems two types of models were used: frontal

and extended. For the DCT based system, frontal models were derived from the generic model using

offset-MLLR. From the results presented in Table 9, it can be observed that model extension reduces the

error rate in both PCA and DCT based systems, with the DCT based system achieving the lowest EER. The

largest error reduction is present in the PCA based system, where the EER is reduced by approximately

58%; for the DCT based system, the EER is reduced by approximately 26%.

9. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the pose mismatch problem which can occur in face verification systems that

have only a single (frontal) face image available for training. In the framework of a Bayesian classifier

based on mixtures of gaussians, the problem was tackled through extending each frontal face model with

artificially synthesized models for non-frontal views. The synthesis was accomplished via methods based

on several implementations of Maximum Likelihood Linear Regression (MLLR) (originally developed

for tuning speech recognition systems), and standard multi-variate linear regression (LinReg). To our

knowledge this is the first time MLLR has been adapted for face verification.

All synthesis techniques rely on prior information and learn how face models for the frontal view

are related to face models at non-frontal views. The synthesis and extension approach was evaluated by

applying it to two face verification systems: a holistic system (utilizing PCA derived features) and a local

feature system (using DCT derived features).

Experiments on the FERET database suggest that for the PCA based system, the LinReg technique

(which is based on a common relation between twosetsof points) is more suited than the MLLR based

techniques (which are “single point to single point” transforms in the PCA based system). For the DCT

based system, the results show that synthesis via a new MLLR implementation obtains better performance

than synthesis based on traditional MLLR (mainly due to a lower number of free parameters). The results

further suggest that extending frontal models considerably reduces errors in both systems.

The results also show that the standard DCT based system (trained on frontal faces) is less affected by

view changes than the PCA based system. This can be attributed to the parts based representation of the
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face (via local features) and, due to the classifier based on mixtures of gaussians, the lack of constraints

on spatial relations between face parts. The lack of constraints allows for deformations and movements of

face areas, which can occur due to view changes. This is in contrast to the PCA based system, where, due

to the holistic representation, the spatial relations are rigidly kept. Interestingly, recent empirical evidence

suggests that humans recognize faces by parts rather than in a holistic manner [54].

Future areas of research include whether it is possible to interpolate between two synthesized models

to generate a third model for a view for which there is no prior information. A related question is

how many discrete views are necessary to adequately cover a wide range of poses. The dimensionality

reduction matrixU in the PCA approach was defined using only frontal faces; higher performance may

be obtained by incorporating non-frontal faces. The local feature/GMM approach can be extended by

embedding position information into each feature vector [19, 21], thus placing a weak constraint on the

face areas each gaussian can model (as opposed to the current absence of constraints). This in turn could

make the transformation of frontal models to non-frontal models more accurate, as different face areas

effectively “move” in different ways when there is a view change. Alternatively, the GMM based classifier

can be replaced with a (more complex) pseudo-2D Hidden Markov Model based classifier [19, 21, 22],

where there is a more stringent constraint on the face areas modeled by each gaussian. Lastly, it would

be useful to evaluate alternative size normalization approaches in order to address the scaling problem

mentioned in Section 2.
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APPENDIX A: CLASS IDS FOR GROUP A, B AND THE IMPOSTOR GROUP.

Classes for group A: 00019, 00029, 00268, 00647, 00700, 00761, 01013 to 01018, 01020 to 01032,

01034 to 01048, 01050, 01052, 01054 to 01066, 01068 to 01076, 01078 to 01081, 01083, 01084, 01085,

01086, 01088 to 01092, 01094, 01098, 01101, 01103, 01106, 01108, 01111, 01117, 01124, 01125, 01156,

01162, 01172.

Classes for group B: 01095 to 01097, 01099, 01100, 01102, 01104, 01105, 01107, 01109, 01110,

01112 to 01116, 01118 to 01120, 01122, 01127 to 01136, 01138 to 01142, 01144, 01146 to 01150, 01152

to 01155, 01157 to 01161, 01163 to 01168, 01170, 01171, 01173 to 01178, 01180 to 01202, 01204 to

01206.

Classes for impostor group: 01019, 01033, 01049, 01051, 01053, 01067, 01077, 01082, 01087,

01093, 01121, 01123, 01126, 01137, 01143, 01145, 01151, 01169, 01179, 01203.
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APPENDIX B: DERIVATION OF OFFSET-MLLR

In the offset-MLLR approach, each mean is redefined as [c.f. Eqn. (10)]:

µ̂g = µg + ∆g (27)

where∆g maximizes the likelihood of given training data. Substituting (27) into (4) results in:

P (x|bµg,Σg) =
exp

č− 1
2
(x− {µg + ∆g})T Σ−1

g (x− {µg + ∆g})
ď

(2π)
D
2 |Σg| 12

(28)

In the framework of the Expectation Maximization (EM) algorithm, we assume that our training dataX

is incomplete and assume the existence of missing dataY = {yi}NV
i=1, where the values ofyi indicate the

mixture component (i.e. the gaussian) that “generated”xi. Thusyi ∈ [1, NG] ∀ i andyi = m if the i-th

feature vector (xi) was “generated” by them-th gaussian. An auxiliary function is defined as follows:

Q(λ, λold) = EY

[
log P (X,Y |λ) | X,λold

]
(29)

It can be shown [47], that maximizingQ(λ, λold), i.e.:

λnew = arg max
λ

Q(λ, λold) (30)

results inP (X|λnew) ≥ P (X|λold) (i.e. the likelihood of the training dataX increases). Evaluating the

expectation in Eqn. (29) results in [55]:

Q(λ, λold) =
NG∑
g=1

NV∑

i=1

log[wg] P (g|xi, λ
old) +

NG∑
g=1

NV∑

i=1

log[P (xi|µg,Σg)] P (g|xi, λ
old) (31)

= Q1 + Q2 (32)

where

P (g|xi, λ
old) =

wold
g N (xi|µold

g , Σold
g )

∑NG

n=1 wold
n N (xi|µold

n , Σold
n )

(33)

A common maximization technique is to take the derivative ofQ(λ, λold) with respect to the parameter
to be maximized and set the result to zero. Since we are interested in finding∆g, we only need to take
the derivate ofQ2:

0 =
∂

∂∆g

NGX
g=1

NVX
i=1

log[P (xi|µg,Σg)] P (g|xi, λ
old) (34)

=
∂

∂∆g

NGX
g=1

NVX
i=1

ů
−1

2
(xi − {µg + ∆g})T Σ−1

g (xi − {µg + ∆g})
ÿ

P (g|xi, λ
old) (35)

=

NVX
i=1

P (g|xi, λ
old)Σ−1

g (xi − {µg + ∆g}) (36)

where−D
2 log(2π) and− 1

2 log(|Σg|) were omitted in Eqn. (35) since they vanish when taking the

derivative. Re-arranging Eqn. (36) yields:

15



∆g =

PNV
i=1 P (g|xi, λ

old)xiPNV
i=1 P (g|xi, λold)

− µg (37)

Substituting Eqn. (37) into Eqn. (27) yields:

µ̂g =
∑NV

i=1 P (g|xi, λ
old)xi∑NV

i=1 P (g|xi, λold)
(38)

which is the standard maximum likelihood re-estimation formula for the mean. Following [36], we modify
the re-estimation formula for tied transformation parameters (e.g. a single∆ shared by all means). If∆S

is shared byNS gaussians{gr}NS
r=1, Eqn. (35) is modified to:

0 =
∂

∂∆S

NSX
r=1

NVX
i=1

ů
−1

2
(xi − {µgr + ∆S})T Σ−1

gr
(xi − {µgr + ∆S})

ÿ
P (gr|xi, λ

old) (39)

=

NSX
r=1

NVX
i=1

P (gr|xi, λ
old)Σ−1

gr
(xi − {µgr + ∆S}) (40)

which leads to:

∆S =

"
NSX
r=1

NVX
i=1

P (gr|xi, λ
old)Σ−1

gr

#−1 "
NSX
r=1

NVX
i=1

P (gr|xi, λ
old)Σ−1

gr
(xi − µgr )

#
(41)

APPENDIX C: ANALYSIS OF MLLR SENSITIVITY

The results presented in Section 8.1 show that the full-MLLR technique is only reliable when

applied directly to the specific model it was trained to transform, making the full-MLLR transform

unsuitable for model synthesis (where a related model is transformed, instead of the model for which

the transformation was learned). In this section we explore this observation further by measuring how

sensitive the full-MLLR, diag-MLLR and offset-MLLR transforms are to perturbations of the model they

were trained to transform.

The sensitivity is measured as follows. The transformation of the frontal generic model to a +60o

generic model is learned (using 32 regression classes) and the average log-likelihood of +60o data from

group A is found:

A(X|λ+60o

generic) =
1

NV
log P (X|λ+60o

generic) (42)

The mean vectors of the frontal generic model are then “corrupted” by adding gaussian noise with zero

mean and various levels of variance. Formally:

[
µcorrupted

g

]T
=

[
µoriginal

g,d +R(0, σ2)
]D

d=1
(43)

whereµg,d is thed-th element ofµg andR(0, σ) is a gaussian distributed random variable with zero

mean and varianceσ2. The previously learned transformation is applied to the “corrupted” frontal generic

model to obtain a “corrupted” +60o generic model. The average log-likelihood of +60o data from group A

is then found as per Eqn. (42). This process is repeated ten times for each variance setting and the mean of

the average log-likelihood is taken. The mean value represents how well the transformed model represents

the +60o data; the lower the value, the worse the representation. Results are presented in Table 10.
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By treating the mean vectors of frontal client models as noisy instances of the frontal generic model

mean vectors (where the frontal client models were derived from the original frontal generic model), it is

possible to measure the overall “variance” of the frontal mean vectors; this is the variance that a synthesis

technique must handle. While the frontal client models also differ from the frontal generic model in their

covariance matrices, we believe this approach nevertheless provides suggestive results.

The full-MLLR, diag-MLLR and offset-MLLR approaches for deriving frontal client models (from

the original frontal generic model) obtained similar overall “variance” of frontal client means of around

90. From the results shown in Table 10 it can be observed that the full-MLLR transformation is easily

affected by small perturbations of the frontal generic model. Close to level of the required variance (i.e. at

100), the full-MLLR approach produces a +60o generic model which very poorly represents the data on

which the transform was originally trained. In comparison, the diag-MLLR and offset-MLLR transforms

are largely robust to perturbations of the frontal generic model, with the offset-MLLR approach the most

stable.
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FIG. 1 An interpretation of synthesizing a non-frontal client model based on how the frontal generic

model is transformed to a non-frontal generic model.

FIG. 2 Example images from the FERET database for0o (frontal), +25o and +60o views; note that the

angles are approximate.
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FIG. 3 Extracted face windows from images in Fig. 2.
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FIG. 4 Graphical example of the spatial area (shaded) used in DCTmod2 feature extraction forNP =4;

left: NO=0; right: NO=2.
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FIG. 5 Performance of the DCT based system trained and tested on frontal faces, for varying degrees of

overlap and number of gaussians. Traditional MAP based training was used.
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FIG. 6 Performance of the DCT based system trained on frontal faces and tested on +40o faces, for

varying degrees of overlap and number of gaussians. Traditional MAP based training was used.
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FIG. 7 Performance of PCA based system (trained on frontal faces) for increasing dimensionality and the

following angles: -60o, -40o, -25o, -15o and0o (frontal).
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Overlap (NO) Vectors (NV ) Spatial width

0 30 24

1 35 22

2 56 20

3 80 18

4 143 16

5 255 14

6 621 12

7 2585 10

TABLE 1

Number of DCTmod2 feature vectors extracted from a 56×64 face usingNP =8 and varying overlap. It

also shows the effective spatial width (& height) in pixels for each feature vector.

Angle NR=1 NR=2 NR=4 NR=8 NR=16 NR=32
−60o 23.58 48.83 49.50 49.56 49.94 49.81

−40o 13.11 49.61 49.58 49.50 49.47 49.56

−25o 5.81 50.39 49.56 49.56 49.97 49.64

−15o 1.58 49.83 49.47 49.67 49.75 49.69

+15o 1.28 50.19 49.58 49.61 49.81 49.58

+25o 4.69 50.17 49.67 49.69 49.97 49.56

+40o 9.39 49.25 49.67 49.67 49.64 49.53

+60o 19.53 49.81 49.64 49.81 49.75 49.64

TABLE 2

EER performance of full-MLLR synthesis technique for varying number of regression classes.
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Angle NR=1 NR=2 NR=4 NR=8 NR=16 NR=32
−60o 23.56 22.69 22.11 18.33 23.67 32.61

−40o 11.86 11.97 11.14 11.19 15.28 25.17

−25o 5.25 5.72 4.75 3.86 8.06 16.75

−15o 1.64 1.58 1.56 1.50 3.53 16.81

+15o 1.36 1.36 1.33 1.36 2.50 15.67

+25o 4.97 4.42 4.36 3.69 5.92 20.72

+40o 8.97 8.33 7.86 8.78 17.14 29.28

+60o 19.81 16.97 16.86 15.31 31.22 31.25

TABLE 3

EER performance of diag-MLLR synthesis technique for varying number of regression classes.

Angle NR=1 NR=2 NR=4 NR=8 NR=16 NR=32
−60o 23.31 22.78 22.47 19.67 16.97 17.94

−40o 12.28 11.00 10.06 10.83 9.25 7.94

−25o 4.89 5.31 4.64 3.72 3.33 3.44

−15o 1.58 1.58 1.56 1.53 1.44 1.44

+15o 1.36 1.36 1.33 1.33 1.42 1.42

+25o 4.94 4.67 4.42 3.33 3.08 3.28

+40o 9.00 7.42 7.08 7.42 6.81 6.67

+60o 19.86 18.94 18.81 17.11 15.44 14.33

TABLE 4

EER performance of offset-MLLR synthesis technique for varying number of regression classes.
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Angle standard full-MLLR diag-MLLR offset-MLLR
(frontal models) (NR=1) (NR=8) (NR=32)

−60o 22.72 23.58 18.33 ∗ 17.94

−40o 11.47 13.11 11.19 ∗ 7.94

−25o 5.72 5.81 3.86 ∗ 3.44

−15o 2.83 1.58 1.50 ∗ 1.44

+15o 2.64 ∗ 1.28 1.36 1.42

+25o 5.94 4.69 3.69 ∗ 3.28

+40o 10.11 9.39 8.78 ∗ 6.67

+60o 24.72 19.53 15.31 ∗ 14.33

TABLE 5

EER performance for standard frontal models (obtained via traditional MAP based training) and models

synthesized for non-frontal angles via MLLR based techniques. Best result for a given angle is indicated

by an asterix.

Angle frontal full-MLLR diag-MLLR offset-MLLR LinReg

−60o 40.97 49.67 50.00 38.56 ∗ 14.92

−40o 32.61 50.00 49.97 25.75 ∗ 17.19

−25o 19.31 49.69 49.75 ∗ 13.81 15.78

−15o 8.69 49.58 49.72 6.86 ∗ 6.44

+15o 10.39 49.67 49.69 8.36 ∗ 5.72

+25o 20.83 49.58 49.97 14.00 ∗ 7.78

+40o 34.36 49.78 50.00 28.97 ∗ 15.00

+60o 44.92 49.83 49.47 38.44 ∗ 14.89

TABLE 6

EER performance comparison between frontal models and synthesized non-frontal models for the PCA

based system. Best result for a given angle is indicated by an asterix.
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Angle Frontal Synth. Ext.

−60o 28.22 17.94 18.25

−40o 15.17 7.94 9.36

−25o 6.06 3.44 3.28

−15o 1.61 1.44 1.64

+15o 1.44 1.42 1.67

+25o 5.67 3.28 3.53

+40o 9.39 6.67 5.94

+60o 23.75 14.33 16.56

TABLE 7

EER performance of frontal, synthesized and extended frontal models, DCT-derived features;

offset-MLLR based training (frontal models) and synthesis (non-frontal models) was used.

Angle Frontal Synth. Ext.

−60o 40.97 14.92 15.33

−40o 32.61 17.19 17.56

−25o 19.31 15.78 14.94

−15o 8.69 6.44 9.17

+15o 10.39 5.72 3.67

+25o 20.83 7.78 8.11

+40o 34.36 15.00 15.67

+60o 44.92 14.89 16.08

TABLE 8

EER performance of frontal, synthesized and extended frontal models, PCA features; LinReg model

synthesis was used.
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Feature type
Model type

frontal extended

PCA 27.34 11.51

DCT 14.82 10.96

TABLE 9

Overall EER performance of frontal and extended frontal models.

noise variance full-MLLR diag-MLLR offset-MLLR

0 −74.81 −74.81 −74.81
1× 10−7 −76.51 −74.81 −74.81
1× 10−6 −78.76 −74.81 −74.81
1× 10−5 −83.34 −74.81 −74.81
1× 10−4 −91.63 −74.82 −74.81
1× 10−3 −119.95 −74.85 −74.81
1× 10−2 −367.01 −75.14 −74.81
1× 10−1 −246.57× 101 −75.55 −74.82

1 −313.49× 102 −76.80 −74.92
1× 10+1 −205.79× 103 −78.29 −75.96
1× 10+2 −172.71× 104 −84.32 −81.59
1× 10+3 −283.12× 105 −104.29 −95.81

TABLE 10

Mean of the average log-likelihood [Eqn. (42)] computed using +60o generic model; the +60o generic

model was derived from a noise corrupted frontal generic model using a fixed transform (either

full-MLLR, diag-MLLR or offset-MLLR).
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