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Abstract

This paper presents a system for the offline recognition
of cursive handwritten lines of text. The system is based on
continuous density HMMs and Statistical Language Mod-
els. The system recognizes data produced by a single writer.
No a-priori knowledge is used about the content of the text
to be recognized. Changes in the experimental setup with
respect to the recognition of single words are highlighted.
The results show a recognition rate of∼85% with a lexicon
containing 50’000 words. The experiments were performed
over a publicly available database.

1. Introduction

The offline cursive recognition systems presented in the
literature deal, with almost no exception, with single words.
Few works proposed the recognition of word sequences, but
only in the context of heavily constrained applications or us-
ing simplifying conditions. In [1], the problem of postal ad-
dress lines transcription is considered. The variability of the
lines is not high. Moreover, the lexicon is relatively small
(350 entries) and no Out Of Vocabulary words (OOVs) are
expected. The recognition of common texts (news, reports,
tales, etc.) is addressed in [4], but the problem of OOVs
is avoided by extracting the lexicon from the test set. This
corresponds to a strong constraint since it fits the system to
a specific set of texts and makes it not robust with respect to
a change of data.
This work presents an offline cursive handwriting recog-
nition system dealing with unconstrained texts segmented
into lines. No simplifying assumptions are made and no
constraint is imposed to the data to be recognized (except
for the fact of being written in English). The pages con-
tain documents belonging to a corpus assumed to reproduce
the statistics of average English. This allows us to apply
Statistical Language Models (SLM) in order to improve the
performance of our system [3]. We usedN -gram models

(the most successful SLM applied until now [3]) of order
1, 2 and 3. The shift from single word to text line recog-
nition involves several changes in the experimental setup.
The most important one concerns the selection of the lexi-
con. In all of the cursive word recognition experiments, the
lexicon has a full coverage of the data to be recognized (it
is sure that one of the entries of the dictionary is the actual
transcription of the handwritten sample). This is no longer
true for the recognition of unconstrained texts.
When no constraints can be imposed on the text to be recog-
nized, the selection of the vocabulary entries can rely only
on linguistic and statistical criteria. This means that espe-
cially for small vocabulary sizes (less than 20’000 words) it
is probable to have a low coverage of the data.
Another important difference is in the way the performance
of the system is measured. In single word recognition, a
sample is correctly or uncorrectly recognized (there is a sin-
gle source of error). In text recognition, there are several
kinds of error. A word can be not only misclassified, but
also deleted. Moreover, words not appearing in the text can
be inserted during decoding.
Several experiments (changing the size of the lexicon from
1’000 to 50’000 and the order of the language model from 1
to 3) were performed over single writer data. The rest of the
paper is organized as follows: Section 2 provides the statis-
tical foundations of our approach, Section 3 presents SLMs
and N -gram models, Section 4 describes the recognition
system used in our work, Section 5 reports experiments and
results obtained and the final Section 6 draws some conclu-
sions.

2. Statistical Foundations

This section describes the problem of handwritten text
recognition from a statistical point of view. The image is
converted into a sequenceO = (o1, o2, . . . , om) of obser-
vation vectors and the recognition task can be thought of as
finding a word sequencêW fulfilling the following condi-



tion:
Ŵ = arg max

W
p(O|W )p(W ). (1)

whereW = (w, w, . . . , wn) is a sequence of words be-
longing to a fixed vocabularyV . Equation 1 is obtained by
applying a Maximum A Posteriori (MAP) approach and its
right side shows the role of the different sources of infor-
mation in the recognition problem. The termp(O|W ) is the
probability of the observation sequenceO being generated
given the sentenceW . Such probability is estimated with
HMMs. The termp(W ) provides an a priori probability
of the word sequenceW being written and it is estimated
using a Statistical Language Model. A good SLM can sig-
nificantly constrain the search space so that all the sentences
that are unlikely to be written have a low probability.

3 Statistical Language Modeling

Statistical Language Modeling involves attempts to cap-
ture regularities of natural languages in order to improve the
performance of various natural language applications, e.g.
Information Retrieval, Machine Translation and Document
Classification [3].
This section is focused on the use of SLMs in our specific
problem, i.e. the decoding of handwritten texts. As shown
in Equation 1, the SLM is supposed to give the a priori prob-
ability of a certain sentence being written [3].
If W containsn words,p(W ) can be decomposed as fol-
lows:

p(W ) =
n∏

i=1

p(wi|hi) (2)

wherehi = wi−1
1 = (w1, w2, . . . , wi−1) is referred to as

historyof word i.
However, Equation 2 has a fundamental problem: the num-
ber of possible histories is very high. Most of them appear
too few times to allow a statistical approach. The solution to
this problem is to group the histories in a reasonable num-
ber of equivalence classes. Equation 2 can then be rewritten
as follows:

p(W ) =
n∏

i=1

p(wi|hi) =
n∏

i=1

p(wi|Φ(hi)) (3)

whereΦ : {h} → C associates an equivalence class be-
longing to a finite setC to a historyh. The nature ofΦ(h)
allows one to distinguish between different SLM techniques
presented in the literature (see [3] for an extensive survey).
Until now, the staple of language modeling is represented
by theN -gram models. AN -gram model makes an equiv-
alence class out of all the histories ending with the same
N − 1 words:

p(W ) =
n∏

i=1

p(wi|wi−1
i−N+1). (4)

In the next subsection,N -gram models are analyzed in
more detail.

3.1 N-gram Language Models

Although N -grams are based on a simple idea and do
not take any linguistic knowledge into account, they are still
the most successful SLM until now [3]. The probabilities of
the words being written (given their histories) are obtained
by simply counting the relative frequencies of the word se-
quences appearing in a text corpus:

p(wi|wi−1
i−N+1) =

C(wi
i−N+1)

C(wi−1
i−N+1)

(5)

whereC(.) is the number of times a certain event appears.
This corresponds to a Maximum Likelihood (ML) estima-
tion: the estimated probabilitiesp(wi|hi) maximize the
likelihood of the training text. However, this approach gives
rise to a serious problem: the model is fitted to the training
set and the probability of anyN -gram not represented in the
training corpus is estimated to be zero.
The method implied by Equation 5 is a weak approxima-
tion since no text can contain all possibleN -grams, hence
ML estimations must besmoothed. This means that the
probability mass must be redistributed across all possible
N -grams in order to give a nonzero probability to all se-
quences ofN words.
Smoothing allows the extension of anN -gram model
trained on a certain text to any other text, but it gives a
non-zero probability toN -grams that are impossible from
a linguistic point of view. This is the main limit of theN -
gram models.
Among the smoothing techniques available in the literature,
we selected the so-called Good-Turing method. This tech-
nique has the advantage of being based on the Zipf law (a
natural law concerning the distribution of event frequencies
in many natural phenomena) and is then more robust with
respect to a change of data.
The performance of a language model is measured in terms
of Perplexity(PP). The PP is estimated as follows:

PP = 2H (6)

whereH = 1
n

∑
i p(wi|hi) is an estimation of the entropy

of the model (measured over a text). The PP is the average
branching factor of the model, i.e. the average number of
words having a probability significantly higher than zero at
each step of the decoding [3]. In a problem where all the
words have the same probability of being written, the PP
corresponds to the size of the lexicon. For this reason, the
PP is often interpreted as the dictionary size in case of a sin-
gle word recognition problem.
The relationship between the PP of the SLM and the



recognition rate of the system using it cannot be modeled
clearly [3]. A decrease of the PP, which corresponds to an
improvement of the SLM, does not necessarily lead to bet-
ter recognition rate for the system (it can even have negative
effects) and vice versa.

4 The Recognition System

The recognition system used in this paper was originally
developed to work on single words (for a full description,
see [6]), but no modifications were necessary to use it for
handwritten texts .
The system is based on a sliding window approach: after
a normalization step, a fixed width window shifts column
by column from left to right and, at each position, a feature
vector is extracted. The sequence of vectors so obtained is
modeled with continuous density Hidden Markov Models
using diagonal Gaussian Mixture Models as emission prob-
abilities.
A different HMM is trained for each letter and several ap-
proximations are applied: the first one is that a single model
is used for both upper and lower case versions of the same
letter. The capital letters available in the database are in fact
not sufficient for a reliable training. The second one is that
all the models have the same number of statesS and Gaus-
siansG in the mixtures. The third approximation is that
only letters (as well as the ”blank”) are modeled. The other
symbols (punctuation marks, digits, parentheses, etc.) are
treated like noise. This is due to the fact that not enough
symbols are available for a reliable training.
The training is performed with the Baum-Welch algorithm
and it is embedded, i.e. the Baum-Welch is applied to con-
catenations of letter models corresponding to the transcrip-
tions of the handwritten lines. This has two advantages, the
first one is that no segmentation of the training data into
letters is necessary. The second one is that the letters are
modeled as parts of words as they actually are in cursive
handwriting.
The recognition is performed with the Viterbi algorithm
which finds the alignment with the highest likelihood be-
tween a state sequence and the observation vectors. This
is a good approximation of the most probable word being
generated by the model given the observations.

5 Experiments and Results

The experiments were performed using texts written by
a single person. The data set is publicly available on the
web1 and will be referred to asCambridgedatabase.
The Cambridge database was originally presented in [5] and

1The data can be downloaded at the following ftp address:
ftp.eng.cam.ac.uk/pub/data .

5 10 15 20 25 30 35 40 45 50
65

70

75

80

85

90

95

100
Test Set Coverage

Lexicon Size (kWords)

C
ov

er
ag

e 
(%

)

Figure 1. Test set coverage. The plot shows
the coverage of the test set as a function of
the lexicon size.

contains 353 handwritten text lines split into training (153
lines), validation (83 lines) and test set (117 lines). The par-
tition is not performed randomly. The lines are kept in the
same order as they were written in order to reproduce a re-
alistic situation where the data already written by a person
is used to obtain a system able to recognize the data that he
or she will write in the future.
The language models were obtained using the TDT Cor-
pus [2], a collection of news transcriptions obtained from
several journals and broadcasting companies. The corpus
is completely independent from the texts in the handwriting
data sets. In this way, the language models are not fitted to
the specific texts they have to model and the experimental
setup reflects the realistic condition of unconstrained text
recognition.
In the next subsections we show in more detail how the lex-
icon was selected (Section 5.1), how the language models
were trained and tested (Section 5.2) and the obtained re-
sults (Section 5.3).

5.1 Lexicon Selection

In single word recognition, the lexicon is implicitly as-
sumed to always cover 100% of the data to be recognized.
The lexicon is typically determined by information coming
from the application environment (e.g. the zip code in postal
address recognition).
This is not the case for the recognition of unconstrained
texts. The presence of proper names, technical terms and
morphological variations of a single stem makes it impossi-
ble to define auniversallexicon.
The only source of information we assume to have at the



linguistic level is the text corpus we use to train the Lan-
guage Models. The lexicon must then be extracted from it.
The TDT corpus is composed of 20’407’827 words. The
size of its dictionary is 196’209. In order to build a lexicon
of sizeM , we selected theM most frequent words in the
corpus.
This is based on the hypothesis that many words appear-
ing in a text are the so calledfunctional words(preposi-
tions, articles, conjunctions, etc.) and that certain words are
of common use in the language. An important advantage
of this approach is that, using the most frequent words in
the corpus, it is possible to obtain a more reliable model.
The N -gram probabilities are in fact better estimated for
the most frequent words.
The plot in Figure 1 shows the Cambridge test set coverage
of the lexica obtained with the above mentioned criterion
in function of their size. The coverage (the percentage of
words in the text actually represented in the lexicon) is, at a
given lexicon size, the upper limit of the recognition rate.

5.2 N-gram Models Training

The N -gram models used in this work were trained
over the TDT-2 corpus [2], a collection of transcriptions
from several broadcast and newswire sources (ABC, CNN,
NBC, MSNBC, Associated Press, New York Times, Voice
of America, Public Radio International).
The transcriptions of the training set of the handwriting
database was added to the corpus in order to increase the
alignment of the corpus with the texts to be recognized.
For each lexicon described in Section 5.1, three models
(based on unigrams, bigrams and trigrams respectively)
were created. The plots in Figure 2 show the perplexities
of the SLMs as a function of the lexicon size. The perplex-
ity is estimated over the part of the test set covered by the
lexicon, without taking into account the Out-Of-Vocabulary
words.
From Figure 2 we can conclude that a significant improve-
ment is obtained when passing from unigrams to bigrams,
but no further improvement is obtained when applying tri-
grams. This happens for several reasons. The first one
is that the handwritten text is split into lines and only the
words after the third one can take some advantages from the
trigram model. Since a line contains on average 10 words,
this means that only 80% of the data can actually benefit of
the trigram model (while 90% of the data can be modeled
with bigrams).
The second problem is that the percentage of trigrams cov-
ered by the corpus in the test set is only∼40%. This further
reduces the number of words for which the trigram model
can have a positive effect. The coverage in terms of bigrams
is much higher (around 70%) and the percentage of words
over which the model can have an effect is around 90%. For
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Figure 2. Perplexity. The plot shows the PP
of the different models (unigram, bigram and
trigram) over the test set.

this reason, the bigram and trigram models have a similar
perplexity.

5.3 Recognition Results

The performance of a text recognition system can be
measured in different ways. This depends on the fact that
there are three sources of error: substitution (when a word is
incorrectly classified), deletion (when a word is lost because
it is attached to another one during the decoding), insertion
(when a non existing word is added by the decoder). The
most realistic measure of the performance is therecognition
rate which takes into account the three kinds of errors. The
recognition rate is given by100− s−d− i wheres, d andi
are the substitution, deletion and insertion rate respectively.
Note that this can be less than0 (there is no contraint on the
number of insertions). Another performance measure is the
accuracy, which corresponds to100− s− d. The accuracy
accounts for the percentage of words correctly classified,
but does not take into account how close the transcription to
the actual content of the handwritten text. In the remaining
of this work, all the performances are measured in terms of
recognition rate.
First, a baseline system (not using SLMs) is obtained. Mod-
els with10 ≤ S ≤ 14 and10 ≤ G ≤ 15 are trained over the
training set and tested over the validation set (S andG are
the number of states and Gaussians in the models respec-
tively). The system having the best recognition rate (over
the validation set) is the one havingS = 12 andG = 12.
This system is retrained over the union of training and vali-
dation set and is used in the actual recognition experiments.
For each lexicon, we tested four versions of the system: the



baseline version (without SLMs) and three versions using
unigram, bigram and trigram models respectively. The per-
formances of the systems on the test set are reported in Fig-
ure 3, where the recognition rate is plotted as a function of
the lexicon size. The performance is the result of a tradeoff
between the positive effect due to the improvement of the
test set coverage and the negative effect due to the increase
of the lexicon size.
The use of theN -gram models is shown not only to im-
prove the recognition rate (once the lexicon is big enough),
but also to improve the robustness with respect to the in-
crease of the size of the lexicon.
The main source of error is the substitution (around 10%)
followed by the insertion (around 5%). The reasons of sub-
stitution errors are the same as in single word recognition:
short words are more difficult to classify and similar words
(e.g. yield andyields) are confused. The insertion is due
to two reasons: the first one (accounting for∼2%) is due to
scratchs. They are classified as words that do not exist in the
actual transcription of the text. The second one (accounting
for a∼3%) is due to the fact that some words are split into
two (e.g.widestis transcribed aswide st).
No deletion error is observed. The separation between fol-
lowing words is in fact too evident to attach them by missing
the inter-word blank.

6 Conclusions

This work presented a system for the offline recognition
of cursive handwritten lines. The experimental setup has
been designed to reproduce the conditions of unconstrained
text recognition. The only hypothesis about the text to be
transcribed is that it is written in English. This allows the
application of Statistical Language Models trained over a
corpus supposed to reproduce the average statistics of En-
glish.
The SLMs are shown to have a two-fold positive effect: they
improve the recognition rate at a given dictionary size and
they make the system more robust with respect to an in-
crease of the lexicon size. This is important because the
performance is the result of a tradeoff between coverage and
dictionary size.
Although a significant difference in perplexity between un-
igram on one side and bigram and trigram on the other side
can be observed, the different language models give more or
less the same results in terms of recognition rate. This ef-
fect is often observed in the literature [3] and the correlation
of perplexity and recognition rate cannot be modeled very
clearly. This seems to suggest that it is not useful to in-
crease the order of the model from 1 to 3. On the other
hand, in order to have a definitive answer about this prob-
lem, more experiments are needed: further work should be
done soon on the recognition of multiple writer data using
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Figure 3. Recognition rate. The plot shows
the recognition rate of the baseline system
and of the systems using different SLMs.

bigger databases. The possibility of a better alignment be-
tween SLM and text to be recognized through an adaptation
process will be also explored and lines following each other
will be concatenated to get more advantage from bigrams
and trigrams.
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