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Abstract
Image annotation datasets are becoming larger and
larger, with tens of millions of images and tens
of thousands of possible annotations. We pro-
pose a strongly performing method that scales to
such datasets by simultaneously learning to opti-
mize precision at the top of the ranked list of an-
notations for a given image and learning a low-
dimensional joint embedding space for both images
and annotations. Our method, called WSABIE, both
outperforms several baseline methods and is faster
and consumes less memory.

1 Introduction
The emergence of the web as a tool for sharing information
has caused a massive increase in the size of potential datasets
available for machines to learn from. Millions of images on
web pages have tens of thousands of possible annotations
in the form of HTML tags (which can be conveniently col-
lected by querying search engines [Torralba et al., 2008a]),
tags such as in www.flickr.com, or human-curated la-
bels such as in www.image-net.org [Deng et al., 2009].
We therefore need machine learning algorithms for image an-
notation that can scale to learn from and annotate such data.
This includes: (i) scalable training and testing times, and (ii)
scalable memory usage. In the ideal case we would like a
fast algorithm that fits on a laptop, at least at annotation time.
For many recently proposed models tested on small datasets,
e.g. [Makadia et al., 2008], it is unclear if they satisfy these
constraints.

In this work we study feasible methods for just such a goal.
We consider models that learn to represent images and anno-
tations jointly in a low dimension embedding space. Such
embeddings are fast at testing time because the low dimen-
sion implies fast computations for ranking annotations. Si-
multaneously, the low dimension also implies small mem-
ory usage. To obtain good performance for such a model,
we propose to train its parameters by learning to rank, op-
timizing for the top annotations in the list, e.g. optimizing
precision at k (p@k). Unfortunately, such measures can be
costly to train. To make training time efficient we propose
the WARP loss (Weighted Approximate-Rank Pairwise loss).
The WARP loss is related to the recently proposed Ordered

Weighted Pairwise Classification (OWPC) loss [Usunier et
al., 2009] which has been shown to be state-of-the-art on
(small) text retrieval tasks. WARP uses stochastic gradient
descent and a novel sampling trick to approximate ranks re-
sulting in an efficient online optimization strategy which we
show is superior to standard stochastic gradient descent ap-
plied to the same loss, enabling us to train on datasets that
do not even fit in memory. Moreover, WARP can be applied
to our embedding models (in fact, to arbitrary differentiable
models) whereas the OWPC loss, which relies on SVMstruct

cannot.
Overall the novelty of the paper is:

(i) reporting image annotation results on a larger scale than
ever previously reported (10 million training examples
and 100 thousand annotations);

(ii) showing for the first time the utility of optimizing preci-
sion at k for image annotation;

(iii) proposing a large scale algorithm for (approximately)
optimizing precision at k (WARP loss);

(iv) showing that our embedding model yields low memory
usage and fast computation time;

(v) showing that using an embedding model trained with the
WARP loss yields better performance than any known
competing approach for this task.

The structure of the paper is as follows. Section 2 defines
the embedding models that we use. Section 3 defines the
WARP loss and how to train our models with it. Section 4
details prior work, Section 5 describes experiments on large
scale datasets, and Section 6 concludes. Note that parts of this
paper were published previously in [Weston et al., 2010].

2 Joint Word-Image Model
We propose to learn a mapping into a feature space where
images and annotations are both represented. The mapping
functions are therefore different, but are learnt jointly to op-
timize the supervised loss of interest for our final task, that
of annotating images. We start with a representation of im-
ages x ∈ Rd and a representation of annotations i ∈ Y =
{1, . . . , Y }, indices into a dictionary of possible annotations.
We then learn a mapping from the image feature space to the
joint space RD:

ΦI(x) : Rd → RD.



while jointly learning a mapping for annotations:

ΦW (i) : {1, . . . , Y } → RD.

These are chosen to be linear maps, i.e. ΦI(x) = V x and
ΦW (i) = Wi, where Wi indexes the ith column of a D × Y
matrix, but potentially any mapping could be used. In our
work, we use sparse high dimensional feature vectors of bags-
of-visual terms for image vectors x and each annotation has
its own learnt representation (even if, for example, multi-
word annotations share words).

Our goal is to rank the possible annotations of a given im-
age such that the highest ranked ones best describe the seman-
tic content of the image. We consider the following model:

fi(x) = ΦW (i)>ΦI(x) = W>i V x (1)

where the possible annotations i are ranked according to the
magnitude of fi(x), largest first, and our family of models
have constrained norm:

||Vi||2 ≤ C, i = 1, . . . , d, (2)

||Wi||2 ≤ C, i = 1, . . . , Y. (3)
which acts as a regularizer in the same way as is used in lasso
[Tibshirani, 1996]. In the next section we describe the kind
of loss function we employ with our model, and thus subse-
quently the algorithm to train it.

3 Weighted Approximate-Rank Pairwise
(WARP) Loss

We consider the task of ranking labels i ∈ Y given an exam-
ple x. In our setting labeled pairs (x, y) will be provided for
training where only a single annotation yi ∈ Y is labeled cor-
rect1. Let f(x) ∈ RY be a vector function providing a score
for each of the labels, where fi(x) is the value for label i.

A class of ranking error functions was recently defined
in [Usunier et al., 2009] as:

err(f(x), y) = L(ranky(f(x))) (4)

where ranky(f(x)) is the rank of the true label y given by
f(x):

ranky(f(x)) =
∑
i 6=y

I(fi(x) ≥ fy(x))

where I is the indicator function, and L(·) transforms this
rank into a loss:

L(k) =

k∑
j=1

αj , with α1 ≥ α2 ≥ · · · ≥ 0. (5)

This class of functions allows one to define different choices
of L(·) with different minimizers. Minimizing L with αj =

1
Y−1 would optimize the mean rank, α1 = 1 and αj>1 = 0
the proportion of top-ranked correct labels, and larger values
of α in the first few positions optimize the top k in the ranked
list, which is of interest for optimizing precision at k. For

1However, the methods described in this paper could be gener-
alized to the multi-label case, naively by averaging the loss over all
positive labels.

example, given two images, if one choice of function ranks
their true labels at position 1 and position 100 respectively,
and another function both at position 50, then a choice of
αj = 1

Y−1 prefers these functions equally, whereas a choice
of αj = 1/j prefers the first function, which gives superior
precision at 1.

The authors of [Usunier et al., 2009] used this loss (call-
ing their method OWPC) in an SVMstruct formalism to train
on (small) text retrieval datasets, showing experimentally that
the choice of αj = 1/j yields state-of-the-art results measur-
ing precision at k. We hence adopt the same choice but are
interested in a method that can: (i) train embedding models
of the form (1) which cannot be trained using SVMstruct;
and (ii) can be trained efficiently online when the data will
not even fit into memory. In the following section we show
how this can be done by employing a novel sampling trick to
make stochastic gradient descent (SGD) feasible for optimiz-
ing precision at k for arbitrary differentiable models, includ-
ing our embedding model formulation.

Online Learning to Rank
The loss (4) is equal to:

err(f(x), y) =
∑
i 6=y

L (ranky(f(x)))
I(fi(x) ≥ fy(x))

ranky(f(x))

with the convention 0/0 = 0 when the correct label y is top-
ranked. Using the hinge loss instead of the indicator function
to add a margin and make the loss continuous, err can be
approximated by:

err(f(x), y) =
∑
i 6=y

L
(
rank1

y(f(x))
) |1− fy(x) + fi(x)|+

rank1
y(f(x))

(6)
where |t|+ is the positive part of t and rank1

y(f(x)) is the
margin-penalized rank of y:

rank1
y(f(x)) =

∑
i6=y

I(1 + fi(x) > fy(x)). (7)

The overall risk we want to minimize is then:

Risk(f) =

∫
err(f(x), y)dP (x, y). (8)

An unbiased estimator of this risk can be obtained by stochas-
tically sampling in the following way:

1. Sample a pair (x, y) according to P (x, y);

2. For the chosen (x, y) sample a violating label ȳ such that
1 + fȳ(x) > fy(x).

This chosen triplet (x, y, ȳ) has contribution:

errȳ(f(x), y, ȳ) = L(rank1
y(f(x))) |1− fy(x) + fȳ(x)|+

(9)
to the total risk, i.e. taking the expectation of these con-
tributions approximates (8) because we have probability
1/rank1

y(f(x)) of drawing ȳ in step (2) (or a contribution of
0 if rank1

y(f(x)) = 0) which accounts for the denominator
of (6).



Algorithm 1 Online WARP Loss Optimization
Input: labeled data (xi, yi), yi ∈ {1, . . . , Y }.
repeat

Pick a random labeled example (xi, yi)
Let fyi(xi) = ΦW (yi)

>ΦI(xi)
Set N = 0.
repeat

Pick a random annotation ȳ ∈ {1, . . . , Y } \ yi.
Let fȳ(xi) = ΦW (ȳ)>ΦI(xi)
N = N + 1.

until fȳ(xi) > fyi
(xi)− 1 or N ≥ Y − 1

if fȳ(xi) > fyi
(xi)− 1 then

Make a gradient step to minimize:
L(
⌊
Y−1
N

⌋
)|1− fy(xi) + fȳ(xi)|+

Project weights to enforce constraints (2)-(3).
end if

until validation error does not improve.

This suggests for learning we can thus perform the follow-
ing stochastic update procedure [Robbins and Monro, 1951]
over the parameters β that define a family of possible func-
tions f ∈ F :

βt+1 = βt − γt
∂err(f(x), y, ȳ)

∂βt
. (10)

where γt is the learning rate.

Weighted Approximate Ranking
To perform the SGD described above we still have two prob-
lems that make this procedure inefficient:

(i) In step (2), we need to compute the values fi(x) for i =
1, . . . , Y to know which labels ȳ are violators, which is
expensive for large Y .

(ii) rank1
y(f(x)) in (10) is also unknown without comput-

ing fi(x) for i ∈ Y , which again is expensive.

We propose to solve both problems with the following ap-
proach: for step (2), we sample labels i uniformly with re-
placement until we find a violating label.

Now if there are k = rank1
y(f(x)) violating labels, the

random variable Nk which counts the number of trials in our
sampling step follows a geometric distribution of parameter

k
Y−1 (i.e. Pr(Nk > q)=(1− k

Y−1 )q). Thus k = Y−1
E[Nk] . This

suggests that the value of rank1
y(f(x)) in Equation (9) may

be approximated by:

rank1
y(f(x)) ≈

⌊
Y − 1

N

⌋
where b.c is the floor function and N the number of trials in
the sampling step.

Training Our Models
To summarize, our overall method which we call WSABIE
(Web Scale Annotation by Image Embedding, pronounced
“wasabi”) consists of the joint word-image embedding model
of Section 2 trained with the WARP loss of Section 3. The
mapping matrices V and W are initialized at random with

mean 0, standard deviation 1√
d

, which is a common choice,
e.g. as implemented in the Torch Machine Learning library2

(which is the software we used for our experiments). Note,
the initial weights are rescaled if they violate the constraints
(2)-(3). Pseudocode for training with WARP loss is given in
Algorithm 1. We use a fixed learning rate γ, chosen using a
validation set (a decaying schedule over time t is also possi-
ble, but we did not implement that approach). The validation
error in the last line of Algorithm 1 is in practice only eval-
uated after every hour on a subset of the validation set for
computational efficiency.

4 Related Approaches
The problem of image annotation, including the related task
of image classification, has been the subject of much re-
search in the computer vision literature. However, this re-
search mostly concentrates on tasks with a rather small num-
ber of classes, in part due to the availability of appropriate
databases. Well known databases such as Caltech-256 [Grif-
fin et al., 2007] and Pascal-VOC [Everingham et al., 2007]
have a limited number of categories, ranging from 20 to 256.
More recently, projects such as the TinyImage database [Tor-
ralba et al., 2008a] and ImageNet [Deng et al., 2009] have
started proposing larger sets of annotated images with a
larger set of categories, in the order of 104 different cate-
gories. Note that for now, even with these new large datasets,
published results about image annotation/classification have
concentrated on subsets pertaining to a few hundred differ-
ent categories or less only, e.g. [Torralba et al., 2008a;
Fergus et al., 2009]. Much research in the literature has in fact
concentrated on extracting better image features, then train-
ing independently simple classifiers such as linear or kernel
SVMs for each category (e.g. [Grauman and Darrell, 2007a]).

An alternative approach, championed by [Makadia et al.,
2008; Torralba et al., 2008b], and others, is to use k-nearest
neighbors in the image feature space. This has shown good
annotation performance, in particular as the size of the train-
ing set grows. On the other hand, as the data grows, finding
the exact neighbors becomes infeasible in terms of time and
space requirements. Various approximate approaches have
thus been proposed to alleviate this problem, ranging from
trees to hashes, but can suffer from being fast but not precise,
or precise but slow.

Embedding words in a low dimensional space to capture
semantics is a classic (unsupervised) approach in text re-
trieval which has been adapted for image annotation before,
for example PLSA has been used for images [Monay and
Gatica-Perez, 2004] but has been shown to perform worse
than (non-embedding based) supervised ranking models like
PAMIR [Grangier and Bengio, 2008]. Embedding for image
retrieval (rather than annotation) using KCCA was also ex-
plored in [Zhou et al., 2007].

Several loss functions have also recently been proposed to
optimize the top of the ranked list. The most similar to our
work is the so-called OWPC loss of [Usunier et al., 2009],
which is similar to Eq. (6) except that the weight given to

2http://torch5.sourceforge.net/



each pair of labels (y, i) depends on the rank of the incorrect
label i rather than the rank of y. In its original formulation,
the algorithm of [Usunier et al., 2009] relies on SVMstruct

for the optimization, which cannot be used to train our em-
bedding models. Moreover, even if one tries to train our
models with SGD on the OWPC loss, each step would neces-
sarily be more costly as it would require additional sampling
steps to compute or approximate the rank of the incorrect la-
bel. This argument also applies to the loss functions proposed
for other algorithms such as ListNet [Xia et al., 2008] or
SVMmap [Yue et al., 2007] because the contribution to these
losses of a single annotation is tightly bound to the scores of
all other annotations. Thus, to our knowledge none of these
existing methods would scale to our setup as they either can-
not be trained online, or do not avoid computing fi(x) for
each i ∈ Y as the WARP loss does.

5 Experiments
5.1 Datasets
ImageNet Dataset
ImageNet [Deng et al., 2009] is a new image dataset orga-
nized according to WordNet [Fellbaum, 1998]. Concepts
in WordNet, described by multiple words or word phrases,
are hierarchically organized. ImageNet is a growing image
dataset that attaches quality-controlled human-verified im-
ages to these concepts. We split the data into 2.5M images
for training, 0.8M for validation and 0.8M for testing, remov-
ing duplicates between train, validation and test by throwing
away test examples which had too close a nearest neighbor
training or validation example in feature space. The most fre-
quent annotation only appears 0.04% of the time3.

Web-data Dataset
We had access to a very large proprietary database of images
taken from the web, together with a very noisy annotation
based on anonymized user click information, processed sim-
ilarly to ImageNet. The most frequent annotation appears
0.01% of the time.

Table 1 provides summary statistics of the number of im-
ages and labels for the ImageNet and Web-data datasets used
in our experiments.

Table 1: Summary statistics of the datasets used.
Statistics ImageNet Web-data
Number of Training Images 2,518,604 9,861,293
Number of Test Images 839,310 3,286,450
Number of Validation Images 837,612 3,287,280
Number of Labels 15,952 109,444

5.2 Image Representation
In this work we focus on learning algorithms, not feature
representations. Hence, for all methods we try we use a
standard bag-of-visual-terms type representation, which has

3This is a commonly measured sanity check in case there is an
annotation that occurs rather often, artificially inflating precision.

Table 2: Summary of Test Set Results on ImageNet and
Web-data. Precision at 1 and 10 are given.

ImageNet Web-data
Algorithm p@1 p@10 p@1 p@10
Approx. k-NN 1.55% 0.41% 0.30% 0.34%
One-vs-Rest 2.27% 1.02% 0.52% 0.29%
PAMIRIA 3.14% 1.26% 0.32% 0.16%
WSABIE 4.03% 1.48% 1.03% 0.44%

a sparse vector representation. In particular, we use the bag-
of-terms feature setup of [Grangier and Bengio, 2008], which
was shown to perform very well on the related task of im-
age ranking. Each image is first segmented into several over-
lapping square blocks at various scales. Each block is then
represented by the concatenation of color and edge features.
These are discretized into a dictionary of d = 10, 000 blocks,
by training k-means on a large corpus of images. Each image
can then be represented as a bag of visual words: a histogram
of the number of times each visual word was present in the
image, yielding vectors in Rd with an average of dø̄ = 245
non-zero values. It takes on average 0.5 seconds to extract
these features per image (and via sampling the pixels this is
invariant to the resolution).

5.3 Baselines

We compare our proposed approach to several baselines: ap-
proximate k-nearest neighbors (k-NN), one-versus-rest large
margin classifiers (One-Vs-Rest) of the form fi(x) = w>i x
trained using the Passive Aggressive algorithm [Crammer et
al., 2006], or the same models trained with a ranking loss in-
stead, which we call PAMIRIA as it is like the PAMIR model
used in [Grangier and Bengio, 2008] but applied to image
annotation rather than ranking. For all methods, hyperparam-
eters are chosen via the validation set.

We tested approximate k-NN (ANN) because k-NN is not
feasible. There are many flavors of approximation (see, e.g
[Torralba et al., 2008b]). We chose the following: a random
projection at each node of the tree is chosen with a threshold
to go left or right that is the median of the projected train-
ing data to make the tree balanced. After traversing p nodes
we arrive at a leaf node containing t ≈ n/2p of the original
n training points from which we calculate the nearest neigh-
bors. Choosing p trades off accuracy with speed.

5.4 Results

The results of comparing all methods on ImageNet and Web-
data are summarized in Table 2. WSABIE outperforms all
competing methods. We give a deeper analysis of the results,
including time/space requirements in subsequent sections.

Word-Image Embeddings
Example word embeddings learnt by WSABIE for Web-data
are given in Table 3 and some example image annotations are
given in Table 8. Overall, we observe that the embeddings
capture the semantic structure of the annotations (and images
are also embedded in this space).



Table 3: Nearest annotations in the embedding space learnt
by WSABIE on Web-data. Translations (e.g. delphin) and
synonyms or misspellings (beckam, mt fuji) have close em-
beddings.

Annotation Neighboring Annotations
barack obama barak obama, obama, barack, barrack obama
david beckham beckham, david beckam, alessandro del piero
santa santa claus, papa noel, pere noel, santa clause
dolphin delphin, dauphin, whale, delfin, delfini, baleine
cows cattle, shire, dairy cows, kuh, horse, cow
rose rosen, hibiscus, rose flower, rosa, roze
pine tree abies alba, abies, araucaria, pine, neem tree
mount fuji mt fuji, fuji, fujisan, fujiyama, mountain
eiffel tower eiffel, tour eiffel, la tour eiffel, big ben, paris
ipod i pod, ipod nano, apple ipod, ipod apple
f18 f 18, eurofighter, f14, fighter jet, tomcat, mig 21

Table 4: WARP vs. AUC optimization. For each model,
WARP consistently improves over AUC.

ImageNet Web-data
Model Loss p@1 p@1
fi(x) = ΦW (i)>ΦI(x) AUC 1.65% 0.19%
fi(x) = ΦW (i)>ΦI(x) WARP 4.03% 1.03%
fi(x) = w>

i x AUC 3.14% 0.32%
fi(x) = w>

i x WARP 4.25% 0.94%

WARP Loss
We compared different models trained with either WARP or
AUC optimization (via the margin ranking loss |1− fy(x) +
fx̄(y)|+ as is used in PAMIR [Grangier and Bengio, 2008]).
The results given in Table 4 show WARP consistently gives
superior performance. We also compared training time using
WARP (with eq. (1), D = 100), AUC or a standard im-
plementation of SGD for (4) where the rank (7) is computed
explicitly rather than using our approximation method (note,
in that case updates can be made for all violations for a given
image at once) which we call OWPC-SGD. For all methods
we report results using their best learning rate γ as measured
on the validation set. Figure 1 shows after 36 hours WARP
and AUC are well trained, but AUC does not perform as well,
and OWPC-SGD has hardly got anywhere. Hence, the trick
of approximating the rank introduced in Section 3 is very im-
portant for our task.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0  5  10  15  20  25  30  35

T
e

s
t 

P
re

c
is

io
n

@
T

o
p

1
0

hours

Training time WARP vs. AUC vs OWPC-SGD on ImageNet

WARP
AUC

OWPC-SGD

Figure 1: Training time: WARP vs. OWPC-SGD & AUC.

Table 5: Algorithm Time and Space Complexity needed to
return the top ranked annotation on a single test set image,
not including feature generation. Prediction times (d=days,
h=hours) and memory requirements for the whole test sets are
given for the Web-data dataset. We denote by Y the number
of classes, n the number of training examples, d the image
input dimension, dø̄ the average number of non-zero values
per image,D the size of the embedding space, and p the depth
of the tree for approximate k-NN.

Algorithm Time Complexity
Test Time and Memory

Usage for Web-data
Time Space

k-NN O(n · dø̄) 3913 d 27 GB
Approx. k-NN O((p+ n/2p) · dø̄) variable 27 GB
One-vs-Rest O(Y · dø̄) 19 d 8.2 GB
PAMIRIA O(Y · dø̄) 19 d 8.2 GB
WSABIE O((Y + dø̄) ·D) 6.5 d 82 MB

Computational Expense
A summary of the test time and space complexity of the vari-
ous algorithms we compare is given in Table 5 (not includ-
ing cost of pre-processing of features) as well as concrete
numbers on the Web-data using a single computer, and as-
suming the data fits in memory (for WSABIE we give values
for D = 100). In particular k-NN would take 3913 days to
compute the test error on the Web data, corresponding to 103
seconds per image, making it infeasible to use. In compar-
ison, PAMIRIA takes 0.5 seconds to compute per image and
requires 8.2GB. WSABIE takes 0.17 seconds, and requires far
less memory, only 82MB. In summary, WSABIE can be fea-
sibly run on a laptop using limited resources whereas k-NN
requires all the resources of an entire cluster. Moreover as k-
NN has time and space complexity O(n · dø̄), where n is the
number of training examples and dø̄ is the number of non-
zero features, as n increases its use of resources only gets
worse, whereas the other algorithms do not depend on n at
test time.

Ensemble Models
Ensembles of models are known to provide a performance
boost [Wolpert, 1992], so we linearly combined various pre-
trained WSABIE annotation models with different embedding
sizes. We estimated the weights of the linear combination
using the validation set in order to minimize the overall cost.
Table 6 shows a summary of the results. In fact, ensembles
of our model do give an impressive boost in performance.
Combining 100, 200 and 300 dimensional models provides
the best overall performance, while still yielding a scalable
solution, both in terms of memory and time.

Table 6: Ensemble models combining different annotation
approaches on ImageNet. W-300 means WSABIE was trained
with an embedding of size 300. Hyperparameters λ1, λ2, λ3

are chosen on the validation set using grid search.
Ensemble Model p@1 p@10
WSABIE-300 4.03% 1.48%
λ1W-100 + λ2W-200 5.74% 1.97%
λ1W-100 + λ2W-300 5.38% 1.99%
λ1W-100 + λ2W-200 + λ3W-300 6.14% 2.09%



Ensembles of Features and Models
In this paper we have concentrated on learning algorithms,
not feature representations, but of course good feature rep-
resentations can improve results a lot. So far we have only
used one type of feature representation, a bag of visual terms
model, but many other types of feature representation ap-
pear in the literature. Here, we explore the possibility that
an ensemble of feature representations can improve perfor-
mance as has been shown before [Makadia et al., 2008].
We thus combined multiple feature representations which are
the concatenation of various spatial [Grauman and Darrell,
2007b] and multiscale color and texton histograms [Leung
and Malik, 1999] for a total of about 5 × 105 dimensions.
The descriptors are somewhat sparse, with about 50000 non-
zero weights per image. Some of the constituent histograms
are normalized and some are not. We then perform Kernel
PCA [Schoelkopf et al., 1999] on the combined feature rep-
resentation using the intersection kernel [Barla et al., 2003]
to produce a 1024 dimensional input vector for training WS-
ABIE. We then train WSABIE as before. We consider both
a single WSABIE model and an ensemble of trained models
as in the previous section, this time with either 3 or 10 mod-
els all of dimension 100. We also compare to exact nearest-
neighbor using the KPCA features as the representation for
finding neighbors, so we have a comparable input to WS-
ABIE. The results are given in Table 7. Our results show
an ensemble of features and of trained models gives our best
performance of around 10% p@1.

Table 7: Ensembles of features and models on ImageNet.
These results should be compared to single models or en-
sembles of models using only a single feature representation
which are given in Table 6. We also include the result of exact
nearest neighbor, computed over the entire test set using the
KPCA representation of the ensemble of features.

Algorithm p@1 p@10
Exact Nearest Neighbor 7.73% -
WSABIE KPCA features 8.83% 2.71%
WSABIE KPCA ( Ensemble 3 models ) 9.82% 2.88%
WSABIE KPCA ( Ensemble 10 models ) 10.03% 3.02%

Note that although the numerical performance in terms of
p@k still might appear relatively low (the correct annotation
is top-ranked “only” 10% of the time), this is actually much
better than it seems for several reasons. Firstly, in the Ima-
geNet task there are∼16,000 possible labels so it is of course
hard to get the right label top-ranked. Secondly, the p@k
metric is in fact a worst case result. The reason for this is
that there are many labels that are actually either correct or
almost correct, which is not captured by this metric. This
is especially true in the Web-data where annotations include
synonyms or near-synonyms such as “barack obama” and
“obama” (see Table 3). Similarly, predicting “toad” instead
of “frog” is simply labeled as wrong in our system, which
does not capture the semantics that the system got it almost
right. To this end in another work we have developed a met-
ric called sibling-precision which attempts to capture these
semantics, which is detailed in [Weston et al., 2010], but we

do not have space to describe it here. Overall, we believe the
performance of our method actually gives a practically useful
system.

Table 8: Examples of the top 10 annotations of three com-
pared approaches: PAMIRIA , One-vs-Rest and WSABIE, on
the Web-data dataset. Annotations in red+bold are the true
labels.

Image One-vs-Rest WSABIE

surf, bora, belize, sea
world, balena, wale,
tahiti, delfini, surf-
ing, mahi mahi

delfini, orca, dol-
phin, mar, delfin,
dauphin, whale, can-
cun, killer whale, sea
world

eiffel tower, tour
eiffel, snowboard,
blue sky, empire
state building, luxor,
eiffel, lighthouse,
jump, adventure

eiffel tower, statue,
eiffel, mole an-
toneliana, la tour
eiffel, londra, cctv
tower, big ben,
calatrava, tokyo
tower

falco, barack, daniel
craig, obama, barack
obama, kanye west,
pharrell williams, 50
cent, barrack obama,
bono

barrack obama,
barack obama,
barack hussein
obama, barack
obama, james mars-
den, jay z, obama,
nelly, falco, barack

6 Conclusions
We have introduced a scalable model for image annotation
based upon learning a joint representation of images and an-
notations that optimizes top-of-the-list ranking measures.

To our knowledge this is the first data analysis of image
annotation (considering all classes at once, with millions of
data points) at such a scale. We have shown that our embed-
ding model trained with the WARP loss is faster, takes less
memory, and yields better performance than any known com-
peting approach for this task. Stochastic gradient descent is
the standard method for optimizing non-convex models such
as our embedding model, but SGD applied to the loss func-
tion of interest is too slow, and the novelty of our training
algorithm is to use an approximation of the rank, which is
otherwise slow to compute, via a sampling trick that makes
such optimization feasible for the first time. In fact, to the
best of our knowledge this is the largest scale optimization of
a rank-dependent measure attempting to maximize the preci-
sion at the top positions of the ranking reported on any dataset
(not just for image annotation).
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