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Abstract It is clear from such a definition that unusual event de-
tection entails a number of challenges. The rarity of an un-
We address the problem of temporal unusual event de-usual event means that collecting sufficient training data for
tection. Unusual events are characterized by a number ofsupervised learning will often be infeasible, necessitating
features (rarity, unexpectedness, and relevance) that limitmethods for learning from small numbers of examples. In
the application of traditional supervised model-based ap- addition, more than one type of unusual event may occur
proaches. We propose a semi-supervised adapted Hiddern a given data sequence, where the event types can be ex-
Markov Model (HMM) framework, in which usual event pected to differ markedly from one another. This implies
models are first learned from a large amount of (commonly that training a single model to capture all unusual events
available) training data, while unusual event models are will generally be infeasible, further exacerbating the prob-
learned by Bayesian adaptation in an unsupervised mannerlem of learning from limited data. As well as such mod-
The proposed framework has an iterative structure, which eling problems due to rarity, the unexpectedness of unusual
adapts a new unusual event model at each iteration. Weevents means that defining a complete event lexicon will not
show that such a framework can address problems due tobe possible in general, especially considering the genre- and
the scarcity of training data and the difficulty in pre-defining task-dependent nature of event relevance.

unusual events. Experiments on audio, visual, and audio-  Most existing works on event detection have been de-
visual data streams illustrate its effectiveness, comparedsigned to work for specific events, with well-defined models
with both supervised and unsupervised baseline methodsand prior expert knowledge, and are therefore ill-posed for
handling unusual events. Alternatives to these approaches,
addressing some of the issues related to unusual events,
have been proposed recently [17, 19, 6]. However, the prob-
lem remains unsolved.

In some event detection applications, events of interest In th's paper, we propose aframework for unusual ev_ent
detection. Our approach is motivated by the observation

occur over a refatively small proportion of the total time: that, while it is unrealistic to obtain a large training data
e.g. alarm generation in surveillance systems, and extrac-_ " 9 9

tive summarization of raw video events. The automatic de- set for unusual event;, It s conversely possible tq do so
tection of temporal events that are relevant, but whose Oc_for usual events, allowing the creation of a Well-estlmf':lted
currence rate is either expected to be very low or cannot be?:,:igﬁ]l O];nu;[léila?\;gphsﬁJgu(;rld;\gst:vsvrgo'?oe thistﬁirﬁge ?)ff
anticipated at all, constitutes a problem which has recentIyBa es?an adaptation techniaues [1’4] Wﬁicﬁ adant a usual
attracted attention in computer vision and multimodal pro- vgnt model tc? roduce a ngmber of 'unusual eveF;]t models
cessing under an umbrella of names (abnormal, unusual, of p
rare events) [17, 19, 6]. In this paper we employ the term n an unsupgrwsed manner. The prgposed frr?\mework can
unusual evenwhich we define as events with the following thus be considered as a semi-supervised learning technique.
properties: (1) they seldom occur (rarity); (2) they may not In our framework, a new unusual event model is de-
have been thought of in advance (unexpectedness); and (3?_Ned from the_ usual e\_/ent model _at each step of an itera-
they are relevant for a particular task (relevance). ive process via Bayesian adaptation. Temporal dependen-
cies are modeled using HMMs, which have recently shown
*This work was supported by the Swiss National Center of Competence ood performance for unsupervised learning [1]. We objec-
in Research on Interactive Multimodal Information Management (IM2), g P . P 9 L4 . . )
and the EC project Augmented Multi-party Interaction (AMI, pub. AMI- tively eva_'lua'te our algorithm on a number of audio, visual,
62). and audio-visual data streams, each generated by a sepa-

1 Introduction




rate source, and containing different events. With relatively
simple audio-visual features, and compared to both super-
vised and unsupervised baseline systems, our framework
produces encouraging results.

The paper is organized as follows. Section 2 describes
related work. The proposed framework is introduced in Sec-
tion 3. In Section 4, we present experimental results and
discuss our findings. We conclude the paper in Section 5.

2 Related Work

There is a large amount of work on event detection. Most Unusual Event K
works have been centered on the detection of predefined
events in particular conditions using supervised statistical Figure 1. HMM topology for the proposed framework

learning methods, such as HMMs [12, 7, 18], and other

graphical models [3, 11, 10, 9]. In particular, some recent j,q data for such an event type. On the other hand, we

work has attempted to recognibeghlightsin videos, e.9.,  yse Bayesian adaptation techniques to create models for
sports [15, 7, 18]. In our view, this concept is related but \nysyal events in an iterative, data-driven fashion, thus ad-
not identical to unusual event detection. On one hand, typ"dressing the problem of lack of training samples for unusual

cal highlight events in most sports can be well defined from eyents, without relying on pre-defined unusual event sets.
the sports grammar and, although rare, are predictable (e.g.,

oals in football, home-runs in baseball, etc). On the other .

Eand, truly unusual events (e.g. a blackout )in the s:tadium)3 Iterative Adapted HMM

could certainly be part of a highlight. _ _ o _
Fully supervised model-based approaches are appropri- In this section, we flrs_t mtrod_uce our cornputatpnal

ate if unusual events are well-defined and enough train-framework. We then describe the implementation details.

ing samples are available. However, such conditions often )

do not hold for unusual events, which render fully super- 3-1 Framework Overview

vised approaches ineffective and unrealistic. To deal with

the prob|em, an HMM approach was proposed in [6] to As shown in Figures 1 and 3, our framework is a hi-

detect unusual events in aerial videos. Without any mod- erarchical structure based on an ergodic K-class Hidden

els for usual activities, and with only one training sample, Markov Model (HMM) (X is the number of unusual event

unusual events models are handcoded using a set of prestates plus one usual event state), where each state is a sub-
defined spatial semantic primitives (e.g. “close” or “adja- HMM with minimum duration constraint. The central state
cent”). Although unusual event models can be created withrepresents usual events, while the others represent unusual
intuitive primitives for simple cases, it is infeasible for com- events. All states can reach (or be reached from) other states
plex events, in which primitives are difficult to define. in one step, and every state can transmit to itself.

As an alternative, unsupervised approaches for unusual Our method starts by having only one state represent-
event detection have also been proposed [17, 19]. In a faring usual events (Figure 2, step 0). It is normally easy to
field surveillance setting, the use of co-occurrence statisticscollect a large number of training samples for usual events,
derived from motion-based features was proposed in [17] thus Obtaining a well-estimated model for usual events. A
to create a binary-tree representation of common patternsSet of parameter§” of the usual-event HMM model is
Unusual events were then detected by measuring aspecti$arned by maximizing the likelihood of observation se-
of how usual each observation sequence was. The workduences X1, Xo, ..., Xy} as follows:
in [19] proposed an unsupervised technique to detect un- v
usual human activity events in a sur\{elllanc_e setting, using §* — arg max H P(X;0). )
analysis of co-occurrence between video clips and motion / 0
color features of moving objects, without the need to build
models for usual activities. The probability density function of each HMM state is as-

Our work attempts to combine the complementary ad- sumed to be a Gaussian Mixture Model (GMM). We use
vantages of supervised and unsupervised learning in a probthe standard Expectation-Maximization (EM) algorithm [5]
abilistic setting. On one hand, we learn a general usualto estimate the GMM parameters. In the E-step, a segmen-
event model exploiting the common availability of train- tation of the training samples is obtained to maximize the

Jj=1



Training the general model Unusval Sent model  Usual q node1

A general usual event model is estimated with o
a large number of training samples. iteration=0
1. Outlier detection d.‘
Slice the test sequence into fixed length segments. iteration=l
The segment with the lowest likelihood given the d

©

general model is identified as outlier. fresarionz
2. Adaptation
A new unusual event model is adapted from the general

iteration=3

usual event model using the detected outlier. Figure 3. lllustration of the algorithm flow. At each iteration, two
The usual event model is adapted from the general leaf nodes, one representing usual events and the other one repre-
usual event model using the other segments. senting unusual events, are split from the parent usual event node;
3. Viterbi decoding A leaf node representing an unusual event is also adapted from the
Given a new HMM topology (with one more state), parent unusual event node.
the test sequences are decoded using Viterbi
algorithm to determine the boundary of events. guences, the original usual event model is also adapted with
4. Outlier detection the other segments (except for the detected outlier), using
Identify a new outlier, which has the smallest the same adaptation technique for the unusual event model
likelihood given the adapted usual event model. (Figure 2, step 2).
5. Repeatstep2, 3,4 Given the new unusual and usual event models, both
6. Stop adapted from the general usual event model, the HMM

Stop the process after the given number of iterations. topology is changed with one more state. Hence the cur-
rent HMM has 2 states, one representing the usual events
Figure 2. Iterative adapted HMM and one representing the first detected unusual event. The
Viterbi algorithm is then used to find the best possible
state sequence which could have emitted the observation
likelihood of the data, given the parameters of the GMMs. sequence, according to the maximum likelihood (ML) cri-
This is followed by an M-step, where the parameters of the terion (Figure 2, step 3). Transition points, which define
GMMs are re-estimated based on this segmentation. Thisnew segments, are detected using the current HMM topol-
creates a general usual event model. ogy and parameters. A new outlier is now identified by
Given the well-estimated usual event model and an un-sorting the likelihood of all segments given the usual event
seen test sequence, we first slice the test sequence into fixethodel (Figure 2, step 4). The detected outlier provides ma-
length segments with overlapping. This is done by mov- terial for building another unusual event model, which is
ing a sliding window. The choice of the sliding window also adapted from usual event model. At the same time,
size corresponds to the minimum duration constraint in the both the unusual and usual event models are adapted us-
HMM framework. Given the usual event model, the likeli- ing the detected unusual / usual event samples respectively.
hood of each segment is then calculated. The segment withThe process repeats until we obtain the desired number of
the lowest likelihood value is identified as an outlier (Figure unusual events. At each iteration, all usual / unusual event
2, step 1). The outlier is expected to represent one specifianodels are adapted from the parent node (see Figure 3), and
unusual event and could be used to train an unusual evena new unusual event model is derived from the usual event
model. However, one single outlier is obviously insufficient model via Bayesian adaptation. The number of iterations
to give a good estimate of the model parameters for unusuakthus corresponds to the number of unusual event models, as
events. In order to overcome the lack of training material, well as the number of states in the HMM topology.
we propose the use of model adaptation techniques, such as As shown in Figure 3, the proposed framework has a top-
Maximum a posteriori (MAP) [14], where we adapt the al- down hierarchical structure. Initially, there is only one node
ready well-estimated usual event model to a particular un-in the tree, representing the usual event model. At the first
usual event model using the detected outlier, i.e, we startiteration, two new leaf nodes are split from the upper parent
from the usual event model, and move towards an unusuahode: one representing usual events and the other one rep-
event model in some constrained way (see Section 3.2 forresenting unusual events. At the second iteration, there are
implementation details). The original usual event model is three leaf nodes in the tree: two for unusual events and one
trained using a large number of samples, which generallyfor usual events. The tree grows in a top-down fashion un-
means that it yields Gaussians with relatively large vari- til we reach the desired number of iterations. The proposed
ances. In order to make the model better suited for test se-algorithm is summarized in Figure 2.




Compared with previous work on unusual event detec- {w?<®, u** o"**} to represent the weight, mean and
tion, our framework has a number of advantages. Most ex-variance for componentin the new model, respectively.
isting techniques using supervised learning for event detec-These parameters are estimated by ML, using the well-
tion require manually labeling of a large number of train- known equations [2],

ing samples. As our approach is semi-unsupervised, it does "

not need explicitly labeled unusual event data, facilitating new 1 .
initial training of the system and hence application to new Vi Z P(il;, 0) @)
conditions. Furthermore, we derive both unusual event and =t
usual event models from a general usual event model via M pro
: ¢'s Trol ; . S @ P (il 0)

adaptation techniques in an online manner, thus allowing new = JM : , (4)
for a faster model training. In addition, the minimum du- Zj:l P(ilz;,0)
ration constraint for temporal events can be easily imposed M ) cw new
in the HMM framework by simply changing the number of ~ gnew _ 2= Py, 0)(wj — i) (w; — i )T7
cascaded states within each class. ' Z;Vil P(ilz;,0)

In the next subsection, we give more details on the used (5)
adaptation techniques. whereM is the number of data examples.

In the second step, the parameters of a mixtussre

3.2 MAP Adaptation adapted using the following set of update equations [8].

Several adaptation techniques have been proposed for W = o wi 4+ (11— a) - w, (6)
GMM-based HMMs, such as Gaussian clustering, Maxi- . old new
mum Likelihood Linear Regression (MLLR) and Maximum fui = o i+ (1= a) - i, @
a posteriori (MAP) adaptation (also known as Bayesian 6i = (69 + (1 — pd') (1 — po'HT) @®
adaptation) [14]. These techniques have been widely used (1= ) (07 + (i — p) (i newy T

%

in tasks such as speaker and face verification [14, 4]. In ~H

these cases, a general world model of speakers / faces arehere {w;, f1;, ;} are weight, mean and variance of the

trained and then adapted to the particular speaker / face. Iradapted model in component{w¢'?, u$'¢, o?'*} are the

our case, we train a general usual event model and then useorresponding parameters in the old comporiergspec-

MAP to adapt both unusual and usual event models. tively, and « is a weighting factor to control the balance
According to the MAP principle, we select parameters between old model and new estimates. The smaller the

6* such that they maximize the posterior probability density, value of o, the more contribution the new data makes to

that is: the adapted model.

0* = arg meaxP(G\X)

4 Experiments and Results
= argmax P(X10) - P(0), 2

In this section, we first introduce the performance mea-

distribution. When using MAP adaptation, different param- SUre€S and baseline systems we used to evaluate our results.
: ' Then we illustrate the effectiveness of the proposed frame-

eters can be chosen to be adapted [14]. In [14, 4], the pa K USi dio. visual and audio-visual ¢
rameters that are adapted are the Gaussian means, while Ok USIing audio, visual and audio-visual events.

mixture weights and standard deviations are kept fixed and
equal to their corresponding value in the world model. In
our case we adapt all the parameters. The reason to adapt o

the weights is that we model events (either usual or unusual) 1€ problem of unusual event detection is a two-class
with different components in the mixture model. When only classification problem (unusual evers. usual events),
one specific event is present, it is expected that the weightaVith two types of errors: dalse alarm(FA), when the

of the other components will be adapted to zero (or a rela- Method accepts an usual event sample (frame), datbe
tively small value). We also adapt the variances in order to "ei€ction (FR), when the method rejects an unusual event

move from the general model, which may have larger co- sample. The performance.of the unusual event detection
variance matrix, to a specific model, with smaller variance, Méthod can be measured in terms of two error rates: the
focusing on one particular event in the test sequence. false alarm rate(FAR), and thefalse rejection rat§FRR),

Following [14], there are two steps in adaptation. First, d€fined as follows:
estimates of the statistics of the training data are com- number of FAs
puted for each component of the old model. We use FAR

where P(X0) is the data likelihood and () is the prior

4.1 Performance Measures

= 100 9
number of usual eventsamplés %O



number of FRs i i
FR x 100%. (10) Table 1. Audio events data. Number of frames for various methods

R= s
number of unusual event samples (NA: Not Applicable).
The performance for an ideal event detection algorithm method train set test set
should have low values of both FAR and FRR. We also use usual | unusual| usual | unusual
the half-total error rate(HTER), which combines FAR and our approach| 90000 | NA

supervised-1| 90000 | 20000
supervised-2| 90000 | 2000
unsupervised, NA NA

72750 | 2250

FRR into a single measure: HTER &QFRR

4.2 Baseline Systems _ _
event, while all the other events are considered unusual. The

To evaluate the results, we compare the proposed semiMminimum duration for audio events is two seconds. N
We extracted Mel-Frequency Cepstral Coefficients

supervised framework with the following baseline systems. ,
(MFCCs) features for this task. MFCC are short-term

Supervised HMM: Two standard HMM models, one for ; .
usual events and one for unusual events, are trained usingPectral-based features and have been widely used in speech

manually labeled training data according to Equation 1. For recognition [13] and e_lu_dio event class?fif:ation. _W? ex-
testing, the event boundary is obtained by applying Viterbi racted 12 MFCC coefficients from the original audio signal
decoding on the sequences. using a sliding window of 40ms at fixed intervals of 20ms.

For supervised HMM, we test two cases. In the first case,The numper of traiping and testing frames for. the different
we train usual and unusual event models using a large (suf-methOOIS IS shown_ n Table 1. Note that there is no need for
unusual event training data for our approach. For the un-
supervised HMM, there is no need for training data. The
ehercentage of frames for unusual events in the test sequence
is around3%.
Figure 4(a) shows the performance of the proposed ap-
proach with respect to the number of iterations. We observe
that FRR always decreases while FAR continually increases

agglomerative HMM-based clustering algorithm, recently with the increase of thg number of iterations. This is be-
proposed for speaker clustering [1], and that has showncause our approach derives a new unusual event modal from

good performance. The unsupervised HMM clustering al- the usual event model via Bayesian adaptation at each iter-
gorithm starts by over-clustering, i.e. clustering the data ation. With the increase of unusual event models, more un-

into a large number of clusters. Then it searches for the bes#"Sual events can be detected, while more usual events were

candidate pair of clusters for merging based on the crite- aIT:eg aciegtedhas unrlljsual fevents. ) b
rion described in [1]. The merging process is iterated until igure 4(b) shows the performance comparison between

there are only two clusters left, one assumed to corresponcfhe proposed approach and base_llne system_s n te_rr_ns of
to usual events, and another one for unusual events. weTER. We can see that ine supervised HMM with sufficient

assume that the cluster with the largest number of sampleMount gf tra|n|nghQata gives ;he biSt performance. Tge

represents usual events, and the other cluster represents uRroposed approac Improves't e performance, compare to

usual events. This model is referred toumsupervised the superwsed-mnd_unsup_erwsed)asellnes. The resu_lts
For both the proposed approach and the baseline meth_show that the benefit of using the proposed approach is not

ods, all parameters are selected to minintiali-total error performance improvement when sufficient training data is
rate (HTER) criterion on a validation data set available, but rather its effectiveness when there are not

enough training samples for unusual events. The best re-
sult of our approach is obtained 4tterations (HTER=
6.65%), slightly worse tharsupervise-{HTER = 5.29%),

i ) . showing the effectiveness of our approach given that it does
For the first experiment, we used a data set of audio 5 heed any unusual event training data.

events obtained through a sound search enyifiéhe pur-
pose of this experiment is to have a controlled setup for eval-
uation of our algorithm. We first selected 60 minutes audio

data containing only ‘speaking’ events. We then manually The visual dat _ tioate is a 30-minute | K
mixed it with other interesting audio events, namely ‘ap- € \_/(ljsua a?v_vg |n\ée§_]lfga € Its a t—mmlae ong p|? er
plause’, ‘cheer’, and ‘laugh’ events. The length of each con- game video, containingé different events and originally

catenated segment is random. ‘Speaking’ is labeled as usua\@g:juz\l/lgnltzb?rli?u;gg ‘Lr’]is(;ggir; ([:g% ‘ngﬁgn;?nzaggg dsr’e-

Lhitp://www.findsounds.com/types.html ‘passing cards under table’, etc., are categorized as unusual

ficient) number of samples, referred tosaagervised-1In

the second case, referred to agervised-2around10%

of the unusual event training samples from the first cas

are used to train the unusual event HMM. The purpose of

supervised-2s to investigate the case where there is only a

small number of unusual event training samples.
Unsupervised HMM: The second baseline system is an

4.3 Results on Audio Events

4.4 Results on Visual Events




Table 2. Video events data. Number of frames for various methods

FAR (NA: Not Applicable).
054, -+- FRR ||
. —e= HTER train set test set
method

usual | unusual| usual | unusual

our approach{ 9000 NA 1515

supervised-1| 9000 | 1320 7387 195

supervised-2| 9000 300 1215

unsupervised NA NA 1515

these features are concatenated to forth>a6 = 36 di-

iteration (a) mension feature vector to describe the motion in the cur-
041 rent frame. In a similar way, we can compute the color
T TER penicea histogram for the mo};/ing objects iré chromatic color space
| == HTER (supervised 2) fin = = . W n -
03 HTER (unsupervised) (de ed byr R+G+B’g R+G+B) e concate

nate the motion histogram and the color histogram into a
108 = 36 + 2 x 36 dimension feature vector. To reduce the
feature space dimension and for feature decorrelation, we
apply a Principal Component Analysis (PCA) to transform
the 108-dimensional features to 36-dimensional features.
The results are shown in Figure 5. Overall, this is a more
% 2 3 4 5 6 1 8 9 difficult task. We observe the similar trend of FAR and FRR
iteration (b) as in audio event detection, with respect to the number of it-
erations in our approach. The best result of our approach is
obtained with4 iterations, although the values of HTER are
relatively stable betweet iterations andr iterations. We
come to similar conclusions as for the audio event detec-
events (see Figure 6). Other events such as ‘playing cards’tion, that is, the supervised approach with sufficient training
‘drinking water’, and ‘scratching’, are considered as usual samples provides the best performance, while the proposed
events. The minimum duration for these visual events is 15framework is better than the other baseline systems. Note
frames. that the supervised approach with small number of training
The number of training and testing frames for different samples performs worse than the unsupervised approach.
methods is shown in Table 2. While we chose this visual
task to show application on an existing data set, we note thaty 5 Results on Audio-Visual Events
the percentage of frames of unusual events in the test se-
guence is about7%, which does not correspond very well

to th? assumptl_on gfantfy m: de by Otér hr:ocri]ela _The urr]" event detection using the ICCV’'03 recorded presentation
usual eventtesting data for thepervised-method is muc videos, publicly available¢. Each presentation video is

smaller, compared with other methods. This is because We pout 20 minutes in length with 25 frames per second.

use a larger number of unusual event frames (1320) forWe define a set of multimodal unusual events, including

training, and we are left w_lth a small number .of unusual ‘speaker showing demo, audience applause’, ‘speaker play-
event frames (19.5) for testing. TO deal W'Fh this problem, ing video, audience laugh’, and ‘speaker interrupted by au-
we repeat experiments faupervised-Ien times by ran- dience’s questions’. Note that since some unusual events in

igrzn(% Sp“ttm? totallu.n usual devr:a nts r']nto two pg;;[?905nfe with the presentation setting cannot be defined before watching
; rgme\_;,vor trammr?, and the ot ler o?ehwn ra'r\lnes the entire database, the unusual events list we define here
or testing. We report the mean results of the ten runs. Noteg,, 014 pe regarded as a small subset.

allzc;éhfat the amount I(I)f trtr;l]mmt% data fqr the unu;ual TOdel A set of audio-visual features were extracted. For audio
( rames) is smaller than the previous experiments, features, we use the same features as in section 4.3. For

We extract motion and color features from moving g a| features, we extract a motion histogram from each
blocks of each frame in the video in a similar way as in fame of the video, computed in a similar way to section
[19]. We start with a static background image. We de- 4 4 aydio and visual features were then concatenated.
tect the moving objects using background substraction. We  gince the occurrence of unusual events is rare, manu-

then superimpose@x 6 grid on the detected motion mask. 5 |apeling a large amount of samples is impractical, high-
We first compute a motion histogram. In each tile of the

grid, we calculate the total number of motion pixels, and  2http://iwww.robots.ox.ac.ukiawfliccvO3videos

Figure 4. Results for audio unusual event detection. The X-axis
represents the number of iterations in our approach.

We also apply our framework to audio-visual unusual
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Figure 6. Top: Visual event of ‘exchanging cards’; Bottom: Visual
event of ‘passing cards under table’
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7. Results of our approach in terms of FAR, FRR and

(@)

Table 3. Overall the best results

Events Method FAR% | FRR% | HTER %
our method 2.09 11.2 6.65
audio superv_ised 1| 3.97 6.62 5.29
supervised-2| 11.8 12.6 12.2
unsupervised 12.5 24.2 18.3
our method 42.2 21.4 31.8
visual superv?sed-l 26.8 29.6 28.2
supervised-2| 41.3 40.2 40.7
unsupervised 40.1 355 37.8
audio-visual | our approach| 7.20 28.2 17.7

lighting the need for semi-supervised or unsupervised ap-
proaches. Due to the lack of sufficient annotated training
data for the supervised baselines, we only report results of
our approach. Two presentation videos are used for training
to build the general usual event model. We then apply our
framework to a third meeting for unusual event detection.
One of the co-authors labeled the events by hand to obtain
a ground truth in the three videos. The results are shown
in Figure 7. We observe that, with the increase of itera-
tions, FRR decreases while FAR increases, which means
that more unusual events are detected, but at the cost of
falsely accepting more usual events as unusual events. The
best result of our approach is obtained when the number of
iterations isb.

4.6 Overall Discussion

Table 3 summarizes overall results of audio, visual and
audio-visual unusual event detection. For the proposed ap-
proach, the results correspond to the iteration with the min-
imum HTER. For both audio and visual unusual event de-
tection, we can see that supervised HMM well-trained with
sufficient data achieves the best performance while the pro-
posed approach performs better than the other baseline sys-
tems.

As a well-known rule-of-thumb, the number of training
samples needed for a well-trained model is directly related
with the model complexity (the number of model param-
eters). The penalty for training with insufficient data is
over-fitting, i.e. poor generalization capability. Both our
approach and the baseline methods are based on HMMs for
usual and unusual events modeling and hence have similar
model complexity.

For the proposed approach, we currently do not deter-
mine the optimal number of iterations. As shown in Fig-
ures 4, 5 and 7, finding the optimal number of iterations
is a trade-off between FAR and FRR. Some applications
require more unusual events detected thus need more it-
erations. Otherwise, we might stop iterations at the early
stages if fewer false alarms are expected. Automatic model



selection is a difficult problem that we are studying, in par- [4] F. Cardinaux, C. Sanderson, and S. Bengio. Adapted gener-

ticular with the Bayesian Information Criterion (BIC) [16]. ative models for face verificationEEE International Con-

In our approach, there is one additional state in the HMM ference on Automatic Face and Gesture Recogni204.

topology at each iteration, which results in an increase of [5] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood

both the number of model parameters and the likelihood of from incomplete data via the EM algorithndournal of the

a test sequence. BIC could be used to handle the trade-off ~ Royal Statistical Society 39(B), pp. 1-3877.

between model complexity and data likelihood. [6] M.T.Chan, A. Hoogs, J. Schmiederer, and M. Perterson. De-
We also note that feature selection is a critical issue in tecting rare events in video using semantic primitives with

unusual event detection, particularly when using a semi- or HMM. In Proc. ICPR August 2004.

unsupervised approach. The nature of the events found by 7] p chang, M Han, and Y Gong. Highlight detection and clas-

the system will necessarily relate to the nature of discrimi- sification of baseball game video with hidden markov mod-

nation provided by the features. In the above experiments, els. InProc. IEEE ICIP, New York, Sept. 2002.

while the audio features seem to allow such discrimination, ] J. L. Gauvain and C.-H. Lee. Maximum a posteriori estima-

ongoing research should include investigation of different tion for multivariate gaussian mixture observation of markov

visual features. chains. InIEEE Transactions on Speech Audio Processing
Finally, regarding the three properties we used to define volume 2, pp. 291-298, April 1994,

an unusual event (rarity, unexpectedness, and relevance),iq) s Gong and T. Xiang. Recognition of group activities using

our method aims at accounting for the first two (one could a dynamic probabilistic network. IRroc. IEEE ICCV Nice,

argue that unexpectedness is a feature of some rare events).  QOct. 2003.

Rele_vance IS a task-depen_dent propgrty, Who_se mcorporatlo] S. Hongeng, F. Bremond, and R. Nevatia. Bayesian frame-
tion in our work would require human intervention.

work for video surveillance application. IRroc. ICPR
2000.

5 Conclusion [11] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and
R. Nevatia. Event detection and analysis from video streams.

In this paper, we presented a semi-supervised adapted In IEEE Transactions on Pattern Analysis and Machine In-

HMM framework for unusual event detection. The pro- telligence archive Vol.23(8) August 2001.

posed framework is well suited for cases in which collect- [12] N. Oliver, B. Rosario and A. Pentland. A Bayesian Computer
ing sufficient unusual event training data is impractical and Vision System for Modeling Human Interactions. IBEE
unusual events cannot be defined in advance. With rela-  Transactions on Pattern Analysis and Machine Intelligence

tively simple audio-visual features, and compared to both ~ &rchive Vol.22(8) August 2000.
supervised and unsupervised baseline systems, our framd313] L. R. Rabiner and B.-H. JuangFundamentals of Speech

work produces encouraging results. In future work, we will Recognition Prentice-Hall, 1993.

investigate the use of some criterion for optimizing the num- [14] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker

ber of iterations, as well as improved feature selection. verification using adapted gaussian mixture modBigjital
Signal Processing, vol. 10, pp. 19-4D00.
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