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Abstract

We address the problem of temporal unusual event de-
tection. Unusual events are characterized by a number of
features (rarity, unexpectedness, and relevance) that limit
the application of traditional supervised model-based ap-
proaches. We propose a semi-supervised adapted Hidden
Markov Model (HMM) framework, in which usual event
models are first learned from a large amount of (commonly
available) training data, while unusual event models are
learned by Bayesian adaptation in an unsupervised manner.
The proposed framework has an iterative structure, which
adapts a new unusual event model at each iteration. We
show that such a framework can address problems due to
the scarcity of training data and the difficulty in pre-defining
unusual events. Experiments on audio, visual, and audio-
visual data streams illustrate its effectiveness, compared
with both supervised and unsupervised baseline methods.

1 Introduction

In some event detection applications, events of interest
occur over a relatively small proportion of the total time:
e.g. alarm generation in surveillance systems, and extrac-
tive summarization of raw video events. The automatic de-
tection of temporal events that are relevant, but whose oc-
currence rate is either expected to be very low or cannot be
anticipated at all, constitutes a problem which has recently
attracted attention in computer vision and multimodal pro-
cessing under an umbrella of names (abnormal, unusual, or
rare events) [17, 19, 6]. In this paper we employ the term
unusual event, which we define as events with the following
properties: (1) they seldom occur (rarity); (2) they may not
have been thought of in advance (unexpectedness); and (3)
they are relevant for a particular task (relevance).
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It is clear from such a definition that unusual event de-
tection entails a number of challenges. The rarity of an un-
usual event means that collecting sufficient training data for
supervised learning will often be infeasible, necessitating
methods for learning from small numbers of examples. In
addition, more than one type of unusual event may occur
in a given data sequence, where the event types can be ex-
pected to differ markedly from one another. This implies
that training a single model to capture all unusual events
will generally be infeasible, further exacerbating the prob-
lem of learning from limited data. As well as such mod-
eling problems due to rarity, the unexpectedness of unusual
events means that defining a complete event lexicon will not
be possible in general, especially considering the genre- and
task-dependent nature of event relevance.

Most existing works on event detection have been de-
signed to work for specific events, with well-defined models
and prior expert knowledge, and are therefore ill-posed for
handling unusual events. Alternatives to these approaches,
addressing some of the issues related to unusual events,
have been proposed recently [17, 19, 6]. However, the prob-
lem remains unsolved.

In this paper, we propose a framework for unusual event
detection. Our approach is motivated by the observation
that, while it is unrealistic to obtain a large training data
set for unusual events, it is conversely possible to do so
for usual events, allowing the creation of a well-estimated
model of usual events. In order to overcome the scarcity of
training material for unusual events, we propose the use of
Bayesian adaptation techniques [14], which adapt a usual
event model to produce a number of unusual event models
in an unsupervised manner. The proposed framework can
thus be considered as a semi-supervised learning technique.

In our framework, a new unusual event model is de-
rived from the usual event model at each step of an itera-
tive process via Bayesian adaptation. Temporal dependen-
cies are modeled using HMMs, which have recently shown
good performance for unsupervised learning [1]. We objec-
tively evaluate our algorithm on a number of audio, visual,
and audio-visual data streams, each generated by a sepa-



rate source, and containing different events. With relatively
simple audio-visual features, and compared to both super-
vised and unsupervised baseline systems, our framework
produces encouraging results.

The paper is organized as follows. Section 2 describes
related work. The proposed framework is introduced in Sec-
tion 3. In Section 4, we present experimental results and
discuss our findings. We conclude the paper in Section 5.

2 Related Work

There is a large amount of work on event detection. Most
works have been centered on the detection of predefined
events in particular conditions using supervised statistical
learning methods, such as HMMs [12, 7, 18], and other
graphical models [3, 11, 10, 9]. In particular, some recent
work has attempted to recognizehighlights in videos, e.g.,
sports [15, 7, 18]. In our view, this concept is related but
not identical to unusual event detection. On one hand, typi-
cal highlight events in most sports can be well defined from
the sports grammar and, although rare, are predictable (e.g.,
goals in football, home-runs in baseball, etc). On the other
hand, truly unusual events (e.g. a blackout in the stadium)
could certainly be part of a highlight.

Fully supervised model-based approaches are appropri-
ate if unusual events are well-defined and enough train-
ing samples are available. However, such conditions often
do not hold for unusual events, which render fully super-
vised approaches ineffective and unrealistic. To deal with
the problem, an HMM approach was proposed in [6] to
detect unusual events in aerial videos. Without any mod-
els for usual activities, and with only one training sample,
unusual events models are handcoded using a set of pre-
defined spatial semantic primitives (e.g. “close” or “adja-
cent”). Although unusual event models can be created with
intuitive primitives for simple cases, it is infeasible for com-
plex events, in which primitives are difficult to define.

As an alternative, unsupervised approaches for unusual
event detection have also been proposed [17, 19]. In a far-
field surveillance setting, the use of co-occurrence statistics
derived from motion-based features was proposed in [17]
to create a binary-tree representation of common patterns.
Unusual events were then detected by measuring aspects
of how usual each observation sequence was. The work
in [19] proposed an unsupervised technique to detect un-
usual human activity events in a surveillance setting, using
analysis of co-occurrence between video clips and motion /
color features of moving objects, without the need to build
models for usual activities.

Our work attempts to combine the complementary ad-
vantages of supervised and unsupervised learning in a prob-
abilistic setting. On one hand, we learn a general usual
event model exploiting the common availability of train-

Unusual Event 1

1 2 N

Usual Event

1 2 N

Unusual Event K

1 2 N

Figure 1. HMM topology for the proposed framework

ing data for such an event type. On the other hand, we
use Bayesian adaptation techniques to create models for
unusual events in an iterative, data-driven fashion, thus ad-
dressing the problem of lack of training samples for unusual
events, without relying on pre-defined unusual event sets.

3 Iterative Adapted HMM

In this section, we first introduce our computational
framework. We then describe the implementation details.

3.1 Framework Overview

As shown in Figures 1 and 3, our framework is a hi-
erarchical structure based on an ergodic K-class Hidden
Markov Model (HMM) (K is the number of unusual event
states plus one usual event state), where each state is a sub-
HMM with minimum duration constraint. The central state
represents usual events, while the others represent unusual
events. All states can reach (or be reached from) other states
in one step, and every state can transmit to itself.

Our method starts by having only one state represent-
ing usual events (Figure 2, step 0). It is normally easy to
collect a large number of training samples for usual events,
thus obtaining a well-estimated model for usual events. A
set of parametersθ∗ of the usual-event HMM model is
learned by maximizing the likelihood of observation se-
quences{X1, X2, ..., XM} as follows:

θ∗ = arg max
θ

M∏

j=1

P (Xj |θ). (1)

The probability density function of each HMM state is as-
sumed to be a Gaussian Mixture Model (GMM). We use
the standard Expectation-Maximization (EM) algorithm [5]
to estimate the GMM parameters. In the E-step, a segmen-
tation of the training samples is obtained to maximize the
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0. Training the general model
A general usual event model is estimated with
a large number of training samples.

1. Outlier detection
Slice the test sequence into fixed length segments.
The segment with the lowest likelihood given the
general model is identified as outlier.

2. Adaptation
A new unusual event model is adapted from the general
usual event model using the detected outlier.
The usual event model is adapted from the general
usual event model using the other segments.

3. Viterbi decoding
Given a new HMM topology (with one more state),
the test sequences are decoded using Viterbi
algorithm to determine the boundary of events.

4. Outlier detection
Identify a new outlier, which has the smallest
likelihood given the adapted usual event model.

5. Repeat step 2, 3, 4
6. Stop

Stop the process after the given number of iterations.

Figure 2. Iterative adapted HMM

likelihood of the data, given the parameters of the GMMs.
This is followed by an M-step, where the parameters of the
GMMs are re-estimated based on this segmentation. This
creates a general usual event model.

Given the well-estimated usual event model and an un-
seen test sequence, we first slice the test sequence into fixed
length segments with overlapping. This is done by mov-
ing a sliding window. The choice of the sliding window
size corresponds to the minimum duration constraint in the
HMM framework. Given the usual event model, the likeli-
hood of each segment is then calculated. The segment with
the lowest likelihood value is identified as an outlier (Figure
2, step 1). The outlier is expected to represent one specific
unusual event and could be used to train an unusual event
model. However, one single outlier is obviously insufficient
to give a good estimate of the model parameters for unusual
events. In order to overcome the lack of training material,
we propose the use of model adaptation techniques, such as
Maximum a posteriori (MAP) [14], where we adapt the al-
ready well-estimated usual event model to a particular un-
usual event model using the detected outlier, i.e, we start
from the usual event model, and move towards an unusual
event model in some constrained way (see Section 3.2 for
implementation details). The original usual event model is
trained using a large number of samples, which generally
means that it yields Gaussians with relatively large vari-
ances. In order to make the model better suited for test se-
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Figure 3. Illustration of the algorithm flow. At each iteration, two
leaf nodes, one representing usual events and the other one repre-
senting unusual events, are split from the parent usual event node;
A leaf node representing an unusual event is also adapted from the
parent unusual event node.

quences, the original usual event model is also adapted with
the other segments (except for the detected outlier), using
the same adaptation technique for the unusual event model
(Figure 2, step 2).

Given the new unusual and usual event models, both
adapted from the general usual event model, the HMM
topology is changed with one more state. Hence the cur-
rent HMM has 2 states, one representing the usual events
and one representing the first detected unusual event. The
Viterbi algorithm is then used to find the best possible
state sequence which could have emitted the observation
sequence, according to the maximum likelihood (ML) cri-
terion (Figure 2, step 3). Transition points, which define
new segments, are detected using the current HMM topol-
ogy and parameters. A new outlier is now identified by
sorting the likelihood of all segments given the usual event
model (Figure 2, step 4). The detected outlier provides ma-
terial for building another unusual event model, which is
also adapted from usual event model. At the same time,
both the unusual and usual event models are adapted us-
ing the detected unusual / usual event samples respectively.
The process repeats until we obtain the desired number of
unusual events. At each iteration, all usual / unusual event
models are adapted from the parent node (see Figure 3), and
a new unusual event model is derived from the usual event
model via Bayesian adaptation. The number of iterations
thus corresponds to the number of unusual event models, as
well as the number of states in the HMM topology.

As shown in Figure 3, the proposed framework has a top-
down hierarchical structure. Initially, there is only one node
in the tree, representing the usual event model. At the first
iteration, two new leaf nodes are split from the upper parent
node: one representing usual events and the other one rep-
resenting unusual events. At the second iteration, there are
three leaf nodes in the tree: two for unusual events and one
for usual events. The tree grows in a top-down fashion un-
til we reach the desired number of iterations. The proposed
algorithm is summarized in Figure 2.
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Compared with previous work on unusual event detec-
tion, our framework has a number of advantages. Most ex-
isting techniques using supervised learning for event detec-
tion require manually labeling of a large number of train-
ing samples. As our approach is semi-unsupervised, it does
not need explicitly labeled unusual event data, facilitating
initial training of the system and hence application to new
conditions. Furthermore, we derive both unusual event and
usual event models from a general usual event model via
adaptation techniques in an online manner, thus allowing
for a faster model training. In addition, the minimum du-
ration constraint for temporal events can be easily imposed
in the HMM framework by simply changing the number of
cascaded states within each class.

In the next subsection, we give more details on the used
adaptation techniques.

3.2 MAP Adaptation

Several adaptation techniques have been proposed for
GMM-based HMMs, such as Gaussian clustering, Maxi-
mum Likelihood Linear Regression (MLLR) and Maximum
a posteriori (MAP) adaptation (also known as Bayesian
adaptation) [14]. These techniques have been widely used
in tasks such as speaker and face verification [14, 4]. In
these cases, a general world model of speakers / faces are
trained and then adapted to the particular speaker / face. In
our case, we train a general usual event model and then use
MAP to adapt both unusual and usual event models.

According to the MAP principle, we select parameters
θ∗ such that they maximize the posterior probability density,
that is:

θ∗ = arg max
θ

P (θ|X)

= arg max
θ

P (X|θ) · P (θ), (2)

whereP (X|θ) is the data likelihood andP (θ) is the prior
distribution. When using MAP adaptation, different param-
eters can be chosen to be adapted [14]. In [14, 4], the pa-
rameters that are adapted are the Gaussian means, while the
mixture weights and standard deviations are kept fixed and
equal to their corresponding value in the world model. In
our case we adapt all the parameters. The reason to adapt
the weights is that we model events (either usual or unusual)
with different components in the mixture model. When only
one specific event is present, it is expected that the weights
of the other components will be adapted to zero (or a rela-
tively small value). We also adapt the variances in order to
move from the general model, which may have larger co-
variance matrix, to a specific model, with smaller variance,
focusing on one particular event in the test sequence.

Following [14], there are two steps in adaptation. First,
estimates of the statistics of the training data are com-
puted for each component of the old model. We use

{wnew
i , µnew

i , σnew
i } to represent the weight, mean and

variance for componenti in the new model, respectively.
These parameters are estimated by ML, using the well-
known equations [2],

wnew
i =

1
M

M∑

j=1

P (i|xj , θ), (3)

µnew
i =

∑M
j=1 xjP (i|xj , θ)∑M

j=1 P (i|xj , θ)
, (4)

σnew
i =

∑M
j=1 P (i|xj , θ)(xj − µnew

i )(xj − µnew
i )T

∑M
j=1 P (i|xj , θ)

,

(5)
whereM is the number of data examples.

In the second step, the parameters of a mixturei are
adapted using the following set of update equations [8].

ŵi = α · wold
i + (1− α) · wnew

i , (6)

µ̂i = α · µold
i + (1− α) · µnew

i , (7)

σ̂i = α · (σold
i + (µ̂i − µold

i )(µ̂i − µold
i )T )

+(1− α) · (σnew
i + (µ̂i − µnew

i )(µ̂i − µnew
i )T ),

(8)

where{ŵi, µ̂i, σ̂i} are weight, mean and variance of the
adapted model in componenti, {wold

i , µold
i , σold

i } are the
corresponding parameters in the old componenti respec-
tively, andα is a weighting factor to control the balance
between old model and new estimates. The smaller the
value of α, the more contribution the new data makes to
the adapted model.

4 Experiments and Results

In this section, we first introduce the performance mea-
sures and baseline systems we used to evaluate our results.
Then we illustrate the effectiveness of the proposed frame-
work using audio, visual and audio-visual events.

4.1 Performance Measures

The problem of unusual event detection is a two-class
classification problem (unusual eventsvs. usual events),
with two types of errors: afalse alarm (FA), when the
method accepts an usual event sample (frame), and afalse
rejection (FR), when the method rejects an unusual event
sample. The performance of the unusual event detection
method can be measured in terms of two error rates: the
false alarm rate(FAR), and thefalse rejection rate(FRR),
defined as follows:

FAR =
number of FAs

number of usual event samples
× 100%, (9)
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FRR=
number of FRs

number of unusual event samples
× 100%. (10)

The performance for an ideal event detection algorithm
should have low values of both FAR and FRR. We also use
thehalf-total error rate(HTER), which combines FAR and
FRR into a single measure: HTER= FAR+FRR

2 .

4.2 Baseline Systems

To evaluate the results, we compare the proposed semi-
supervised framework with the following baseline systems.

Supervised HMM: Two standard HMM models, one for
usual events and one for unusual events, are trained using
manually labeled training data according to Equation 1. For
testing, the event boundary is obtained by applying Viterbi
decoding on the sequences.

For supervised HMM, we test two cases. In the first case,
we train usual and unusual event models using a large (suf-
ficient) number of samples, referred to assupervised-1. In
the second case, referred to assupervised-2, around10%
of the unusual event training samples from the first case
are used to train the unusual event HMM. The purpose of
supervised-2is to investigate the case where there is only a
small number of unusual event training samples.

Unsupervised HMM: The second baseline system is an
agglomerative HMM-based clustering algorithm, recently
proposed for speaker clustering [1], and that has shown
good performance. The unsupervised HMM clustering al-
gorithm starts by over-clustering, i.e. clustering the data
into a large number of clusters. Then it searches for the best
candidate pair of clusters for merging based on the crite-
rion described in [1]. The merging process is iterated until
there are only two clusters left, one assumed to correspond
to usual events, and another one for unusual events. We
assume that the cluster with the largest number of samples
represents usual events, and the other cluster represents un-
usual events. This model is referred to asunsupervised.

For both the proposed approach and the baseline meth-
ods, all parameters are selected to minimizehalf-total error
rate (HTER) criterion on a validation data set.

4.3 Results on Audio Events

For the first experiment, we used a data set of audio
events obtained through a sound search engine1. The pur-
pose of this experiment is to have a controlled setup for eval-
uation of our algorithm. We first selected 60 minutes audio
data containing only ‘speaking’ events. We then manually
mixed it with other interesting audio events, namely ‘ap-
plause’, ‘cheer’, and ‘laugh’ events. The length of each con-
catenated segment is random. ‘Speaking’ is labeled as usual

1http://www.findsounds.com/types.html

Table 1. Audio events data. Number of frames for various methods
(NA: Not Applicable).

train set test set
method

usual unusual usual unusual
our approach 90000 NA
supervised-1 90000 20000
supervised-2 90000 2000

72750 2250

unsupervised NA NA

event, while all the other events are considered unusual. The
minimum duration for audio events is two seconds.

We extracted Mel-Frequency Cepstral Coefficients
(MFCCs) features for this task. MFCC are short-term
spectral-based features and have been widely used in speech
recognition [13] and audio event classification. We ex-
tracted 12 MFCC coefficients from the original audio signal
using a sliding window of 40ms at fixed intervals of 20ms.
The number of training and testing frames for the different
methods is shown in Table 1. Note that there is no need for
unusual event training data for our approach. For the un-
supervised HMM, there is no need for training data. The
percentage of frames for unusual events in the test sequence
is around3%.

Figure 4(a) shows the performance of the proposed ap-
proach with respect to the number of iterations. We observe
that FRR always decreases while FAR continually increases
with the increase of the number of iterations. This is be-
cause our approach derives a new unusual event modal from
the usual event model via Bayesian adaptation at each iter-
ation. With the increase of unusual event models, more un-
usual events can be detected, while more usual events were
falsely accepted as unusual events.

Figure 4(b) shows the performance comparison between
the proposed approach and baseline systems in terms of
HTER. We can see that the supervised HMM with sufficient
amount of training data gives the best performance. The
proposed approach improves the performance, compared to
the supervised-2and unsupervisedbaselines. The results
show that the benefit of using the proposed approach is not
performance improvement when sufficient training data is
available, but rather its effectiveness when there are not
enough training samples for unusual events. The best re-
sult of our approach is obtained at4 iterations (HTER=
6.65%), slightly worse thansupervise-1(HTER = 5.29%),
showing the effectiveness of our approach given that it does
not need any unusual event training data.

4.4 Results on Visual Events

The visual data we investigate is a 30-minute long poker
game video, containing26 different events and originally
manually labeled and used in [19]. Seven cheating re-
lated events, including ‘hiding a card’, ‘exchanging cards’,
‘passing cards under table’, etc., are categorized as unusual
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Figure 4. Results for audio unusual event detection. The X-axis
represents the number of iterations in our approach.

events (see Figure 6). Other events such as ‘playing cards’,
‘drinking water’, and ‘scratching’, are considered as usual
events. The minimum duration for these visual events is 15
frames.

The number of training and testing frames for different
methods is shown in Table 2. While we chose this visual
task to show application on an existing data set, we note that
the percentage of frames of unusual events in the test se-
quence is about17%, which does not correspond very well
to the assumption ofrarity made by our model. The un-
usual event testing data for thesupervised-1method is much
smaller, compared with other methods. This is because we
use a larger number of unusual event frames (1320) for
training, and we are left with a small number of unusual
event frames (195) for testing. To deal with this problem,
we repeat experiments forsupervised-1ten times by ran-
domly splitting total unusual events into two parts: one with
1320 frames for training, and the other one with 195 frames
for testing. We report the mean results of the ten runs. Note
also that the amount of training data for the unusual model
(1320 frames) is smaller than the previous experiments.

We extract motion and color features from moving
blocks of each frame in the video in a similar way as in
[19]. We start with a static background image. We de-
tect the moving objects using background substraction. We
then superimpose a6×6 grid on the detected motion mask.
We first compute a motion histogram. In each tile of the
grid, we calculate the total number of motion pixels, and

Table 2. Video events data. Number of frames for various methods
(NA: Not Applicable).

train set test set
method

usual unusual usual unusual
our approach 9000 NA 1515
supervised-1 9000 1320 195
supervised-2 9000 300

7387
1215

unsupervised NA NA 1515

these features are concatenated to form a6 × 6 = 36 di-
mension feature vector to describe the motion in the cur-
rent frame. In a similar way, we can compute the color
histogram for the moving objects in chromatic color space
(defined byr = R

R+G+B , g = G
R+G+B ). We concate-

nate the motion histogram and the color histogram into a
108 = 36 + 2× 36 dimension feature vector. To reduce the
feature space dimension and for feature decorrelation, we
apply a Principal Component Analysis (PCA) to transform
the 108-dimensional features to 36-dimensional features.

The results are shown in Figure 5. Overall, this is a more
difficult task. We observe the similar trend of FAR and FRR
as in audio event detection, with respect to the number of it-
erations in our approach. The best result of our approach is
obtained with4 iterations, although the values of HTER are
relatively stable between4 iterations and7 iterations. We
come to similar conclusions as for the audio event detec-
tion, that is, the supervised approach with sufficient training
samples provides the best performance, while the proposed
framework is better than the other baseline systems. Note
that the supervised approach with small number of training
samples performs worse than the unsupervised approach.

4.5 Results on Audio-Visual Events

We also apply our framework to audio-visual unusual
event detection using the ICCV’03 recorded presentation
videos, publicly available2. Each presentation video is
about 20 minutes in length with 25 frames per second.
We define a set of multimodal unusual events, including
‘speaker showing demo, audience applause’, ‘speaker play-
ing video, audience laugh’, and ‘speaker interrupted by au-
dience’s questions’. Note that since some unusual events in
the presentation setting cannot be defined before watching
the entire database, the unusual events list we define here
should be regarded as a small subset.

A set of audio-visual features were extracted. For audio
features, we use the same features as in section 4.3. For
visual features, we extract a motion histogram from each
frame of the video, computed in a similar way to section
4.4. Audio and visual features were then concatenated.

Since the occurrence of unusual events is rare, manu-
ally labeling a large amount of samples is impractical, high-

2http://www.robots.ox.ac.uk/∼awf/iccv03videos
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Figure 5. Results of visual unusual events detection.

Figure 6. Top: Visual event of ‘exchanging cards’; Bottom: Visual
event of ‘passing cards under table’
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Figure 7. Results of our approach in terms of FAR, FRR and
HTER.

Table 3. Overall the best results

Events Method FAR % FRR % HTER %
our method 2.09 11.2 6.65
supervised 1 3.97 6.62 5.29

audio
supervised-2 11.8 12.6 12.2
unsupervised 12.5 24.2 18.3
our method 42.2 21.4 31.8
supervised-1 26.8 29.6 28.2

visual
supervised-2 41.3 40.2 40.7
unsupervised 40.1 35.5 37.8

audio-visual our approach 7.20 28.2 17.7

lighting the need for semi-supervised or unsupervised ap-
proaches. Due to the lack of sufficient annotated training
data for the supervised baselines, we only report results of
our approach. Two presentation videos are used for training
to build the general usual event model. We then apply our
framework to a third meeting for unusual event detection.
One of the co-authors labeled the events by hand to obtain
a ground truth in the three videos. The results are shown
in Figure 7. We observe that, with the increase of itera-
tions, FRR decreases while FAR increases, which means
that more unusual events are detected, but at the cost of
falsely accepting more usual events as unusual events. The
best result of our approach is obtained when the number of
iterations is5.

4.6 Overall Discussion

Table 3 summarizes overall results of audio, visual and
audio-visual unusual event detection. For the proposed ap-
proach, the results correspond to the iteration with the min-
imum HTER. For both audio and visual unusual event de-
tection, we can see that supervised HMM well-trained with
sufficient data achieves the best performance while the pro-
posed approach performs better than the other baseline sys-
tems.

As a well-known rule-of-thumb, the number of training
samples needed for a well-trained model is directly related
with the model complexity (the number of model param-
eters). The penalty for training with insufficient data is
over-fitting, i.e. poor generalization capability. Both our
approach and the baseline methods are based on HMMs for
usual and unusual events modeling and hence have similar
model complexity.

For the proposed approach, we currently do not deter-
mine the optimal number of iterations. As shown in Fig-
ures 4, 5 and 7, finding the optimal number of iterations
is a trade-off between FAR and FRR. Some applications
require more unusual events detected thus need more it-
erations. Otherwise, we might stop iterations at the early
stages if fewer false alarms are expected. Automatic model
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selection is a difficult problem that we are studying, in par-
ticular with the Bayesian Information Criterion (BIC) [16].
In our approach, there is one additional state in the HMM
topology at each iteration, which results in an increase of
both the number of model parameters and the likelihood of
a test sequence. BIC could be used to handle the trade-off
between model complexity and data likelihood.

We also note that feature selection is a critical issue in
unusual event detection, particularly when using a semi- or
unsupervised approach. The nature of the events found by
the system will necessarily relate to the nature of discrimi-
nation provided by the features. In the above experiments,
while the audio features seem to allow such discrimination,
ongoing research should include investigation of different
visual features.

Finally, regarding the three properties we used to define
an unusual event (rarity, unexpectedness, and relevance),
our method aims at accounting for the first two (one could
argue that unexpectedness is a feature of some rare events).
Relevance is a task-dependent property, whose incorpora-
tion in our work would require human intervention.

5 Conclusion

In this paper, we presented a semi-supervised adapted
HMM framework for unusual event detection. The pro-
posed framework is well suited for cases in which collect-
ing sufficient unusual event training data is impractical and
unusual events cannot be defined in advance. With rela-
tively simple audio-visual features, and compared to both
supervised and unsupervised baseline systems, our frame-
work produces encouraging results. In future work, we will
investigate the use of some criterion for optimizing the num-
ber of iterations, as well as improved feature selection.
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