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ABSTRACT occur since large vectors of audio-visual features from all

. . . meeting participants are concatenated to define the obser-
This paper investigates the use of unlabeled data to help la- _ .. TR

o o ; vation space [5]. This situation is aggravated by the label-
beled data for audio-visual event recognition in meetings.

N : s ing difficulties. Meeting event labeling is both laborious
To deal with situations in which itis difficult to collect enough _ * time-consuming since meetings are often lengthy, and

labeled data to capture event characteristics, but collecting,, i, meetings are jointly defined by audio-visual pat-

a large amount of unlabeled data is easy, we present a semi: : . . X
. ; L . rs. Thef f thi ri resen mi- rvi
supervised framework using HMM adaptation techniques. terns. The focus of this paper is to present a semi-supervised

. - roach for event r nition in situations in which ther
Instead of directly training one model for each event, we approach for event recognitio situations ch there

first trai ll-estimated | t model for all i is not enough labeled training data, and the high dimension-
rstirain a wetl-estimated general event modet for all events ality of the observation space would require a large amount
using both labeled and unlapgled data, and thgn aQapt th%f labeled data to capture the event characteristics.
general model to e_ach specific event model using its own "~ work is motivated by the fact that while obtain-
Iabeled_data. We |_Ilustrate the pr(_)posc_ed appr_oach with aing sufficient labeled training data for audio-visual events
set of eight audio-visual events defined in meetings. Exper-. . . : ;

) . . ; .~ is a difficult and time-consuming task, collecting a large
iments and comparison with the fully-supervised baseline

thod show th liditv of th d . . damount of unlabeled data is usually easier. In this view,
;npepr:ac; ow the validity ot tne proposed semi-supervise learning with both labeled and unlabeled data, referred to as

semi-supervised learning, becomes a very attractive option
1. INTRODUCTION £10]. In this paper, we propose a semr_sgperwsed HMM
ramework for audio-visual event recognition, as an alter-
Audio-visual analysis enables us to recognize diverse eventsative to the fully supervised approach. Pooling labeled
ranging from sports highlights to unusual events in surveil- and unlabeled training data together, we first build a well-
lance. Recently, automatic meeting analysis has attractecestimated general event model. Each specific event model is
interest from researchers in the fields of speech, vision andderived from the general event model using its own labeled
multimedia. Detecting and recognizing audio-visual events training data via Bayesian adaptation. The proposed frame-
in meetings can be useful for meeting browsing and finding work is general and can be easily applied to many cases
relevant segments of interest. in which collecting labeled data is difficult, but collecting a
Current approaches to event recognition follow the su- large amount of unlabeled data is easy. We apply our frame-
pervised paradigm, in which event models, suiting the goalswork to a set of eight events defined based on multimodal
of a particular domain, are trained from labeled data, andturn-taking patterns in meetings, and illustrate its effective-
then used for recognition on test data. Most existing work ness compared with the supervised method. The rest of the
has used Hidden Markov Models (HMMs) [8] and exten- paper is organized as follows. Section 2 introduces the pro-
sions, including coupled HMMs, input-output HMMs, multi- posed approach. Section 3 presents experiments and discus-
stream HMMs, and asynchronous HMMs (see [6] for a re- sion. Concluding remarks are provided in Section 4.
cent review of models). Although the basic HMM, a dis- 2. SEMI-SUPERVISED FRAMEWORK

crete state-space model with an efficient learning algorithm, : . L . .
P gag In this section, we first introduce our semi-supervised HMM

works well for temporally correlated sequential data, it is . . : :
challenged by a large number of parameters, and runs theframework. We then describe the implementation details

risk of over-fitting when learned from limited data [7]. In and the set of eight meeting events we used.
the case of meeting events recognition, this situation mights 1 Framework Overview

This work was carried outin the framework of the Swiss NCCR (IM)2, Our framework is based on Hidden Markov Mpdels (HMMs)
and the European projects M4 and AMI. for temporal event modeling. Instead of training one HMM



for each event using the corresponding labeled data, weparameterg™* such that they maximize the posterior proba-
first train a well-estimated HMM, referred to aeneral bility density, that is:

HMM (G-HMM), using all Iabc_aled and unlabeled data for g« _ arg max P(0]X) = argmax P(X|0) - P(0), (2)

all events, according to Equation 1. [ [

N where P(X0) is the data likelihood and () is the prior
6" = argmax | [ P(X;16), (1)  distribution.
0 5 Following [9], there are two steps in adaptation. First,

estimates of the statistics of the training data are computed
for each component of the old model. We §sg' ™, v, glew

to represent the weight, mean and variance for component
1 in the new model, respectively. These parameters are es-
timated by Maximum Likelihood (ML), given by the well-

known equations [2],

where the set of parametetsis learned by maximizing the
likelihood of both labeled and unlabeled défs; , X5, ..., Xn }
for all events. The probability density function of each HMM
state is assumed to be a Gaussian Mixture Model (GMM).
We use Expectation-Maximization (EM) algorithm [2] to
train GMM parameters.

G-HMM can be viewed as generalevent model since new 1 <N
it is trained by pooling various events data (both labeled and Wi = Z P(ilz;,9), ®)
unlabeled) together. Next, we adapt the parameters of this =1
generalmodel to derive models for eadpecificevent us- i 21-\11 z;P(ilz;,0)
ing its own labeled sampleke. we move from theyeneral pe = S ; (4)
event model to apecificevent model using the correspond- ijl P(ilx;,0)
ing _Iabeled datq and adgptation t_echniques (see section 2.2 e Zj,”il P(i|zj,0)(x; — pl) (z; — prew)T
for implementation details). In this way, we can overcome 0; = i X ;
the lack of labeled data for each event for a good estimate Zi:l P(ilz;,0)
of the model’s parameters. ®)

Gi HMMs for all _ deled whereM is the number of data examples.
ven s for all events, a meeting Is modeled as In the second step, the parameters of a mixiueze

Fhe concatenation of single eve_nt HMMs. Th_e correspond.- adapted using the following set of update equations [4].
ing sequence of events is obtained by applying the Viterbi

decoding algorithm, a standard technique for segmentation ;= - wi + (1 — ) - w, (6)
and recognition with HMMs [8]. Given a sequence of audio- N old new

| : _ PN 1—a)-umew, 7
visual features extracted from a meeting, the Viterbi algo- R s z/: ! + ( (2 M ‘ T )
rithm produces the sequence of states most likely to have 0 = a- (0" 4 (1 — ") (i — pg™)")

(8)

generated the features. The state sequence corresponds to (1 — a) - (67" + (ji; — ") (f1; — pe®)7T),

meeting evgnts, so that the meeting events are segmente\gvhere{wi’ s, 6} are the weight, mean and variance of the
and recognized.

adapted model in component{w¢?, u'¢, o2!?} are the

2.2. MAP Adaptation corresponding weight, mean and variance in old component
respectively, andv is a weighting factor to control the

alance between old model and new estimates. The smaller

the value ofn, the more contribution the new data makes to

the adapted model. We will investigate the effeciaobn

he performance in Section 3.

Several adaptation techniques have been proposed for GMI\/LL
based HMMs, such as Gaussian clustering, Maximum Like-
lihood Linear Regression (MLLR) and Maximum a posteri-

ori (MAP) adaptation (also known as Bayesian adaptation) i
[9]. These techniques have been widely used in tasks such
as speaker and face verification [9, 3]. In these cases, ageny 3. Audio-visual Events in Meetings

eral world model of speakers / faces are trained and thenpag g implementation of the proposed framework, we use
adapted to the specific speaker / face model. the set of events first defined in [5] (see Table 1). We model
The parameters of a GMM-based HMM incluthe num- 5 meeting (assumed to have four participants) as a sequence
ber of Gaussian components, means, variances, mixture weightsc|usive events taken from the set of 8 evefitscussion,
and state-transition probabilitieswhen using MAP adap- monologuel, monologue2, monologue3, monologue4, note-
tation, different parameters can be chosen for adap_tationtaking, presentation, white-bogrdNote that we differenti-
[ In our case, the parameters adapted raman, vari-  ate monologue events by different participarits, mono-
ance, mixture weightsvhile the state-transition probabili- loguel is a monologue by meeting participanett, Given
tiesare kept fixed and equal to their corresponding values the audio-visual feature sequence extracted from a meeting,
in the general model. This is because the path chosen by, ,, goal is to segment and recognize the event sequence

the Viterbi algorithm is mostly influenced by the emission p _ {E,, Es, ...}, where E; belongs to one of the eight
probabilities [1]. According to the MAP principle, we select meeting e’ven’ts in Table 1.



Table 1. Description of meeting events Table 2. Number of frames in different data sets (NXot

Events Description Applicable because the supervised method does not use
Discussion | most participants engaged in conversations ~ unlabeled data in the training process; [400,10000] means
one participant speaking from 400 to 10000.).
Monologue : : ) .
continuously without interruption train valiid
Note-taking mgz; p;;fé?;;rff Ft)?glsr;% Qr?;es method labeled Uniabeled] -ation | €St |
Presentation . " supervised NA
and using tt_h_e prc;jectorks_creen semi-supervised [400,10000] 30048 4552 | 43400 ‘
White-board one participant speaking
and using the white-board . .
All visual and audio features were extracted at 5 frames

per second, and then concatenated.

3.3. Measures and Experimental Setup

We use theaction error rate(AER) to evaluate our results.
AER is equivalent to thevord error rate (WER) widely
used in continuous speech recognition, and is defined as
the sum ofinsertion(Ins), deletion(Del), andsubstitution

Fig. 1. Multi-camera meeting room (Subs) errors, divided by the total number of events in the

3. EXPERIMENTS AND RESULTS ground-truth: AER= SE)?? DS 100%

) ) ) ] ] We then compare the proposed semi-supervised approach
In this section, we describe the experiments. First, we de-yith supervised HMMs. For the supervised method, one
scribe the meeting corpus and the audio-visual features weqpmm for each event is directly trained using its own la-
extracted. We then present our performance measures anggleq data. For testing, the Viterbi algorithm [8] is applied
experimental setup. Finally, we present results and discussg, segment and recognize meeting events.
our findings. The meeting corpus is divided into training (27 meet-
ings), validation (3 meetings) and testing (29 meetings) sets.
Each meeting in the training data set was randomly assigned
'to either the labeled or the unlabeled set. The number of
frames in different data sets is summarized in Table 2. In
order to investigate performance with respect to the size of
}he labeled data, the size of labeled training data is progres-
sively increased. Starting from 400 labeled frames, which
correspond to 50 frames for each of the eight possible events,
the number of labeled frames increases with a step size of
400. Therefore, we get trained (adapted) models over 400,
800, ..., 10000 labeled frames respectively. The general
3.2, Feature Extraction model in the semi-supervised method were trained using all

We extracted a set of standard audio-visual features [5]. Vi- (raining data (both labeled and unlabeled).
sual features were extracted from the three cameras. For |he model parameters (the number of HMM states, and

the two cameras looking at people, visual features extracted® NUmber of Gaussians per mixture) are determined using
consist of head vertical centroid position and eccentricity, 2 validation data set, randomly generated from 30 training
hand horizontal centroid position, eccentricity, and angle. meetings. The parameter space, the number of states

The motion magnitude for head and hand blobs were also?d number of Gaussians, ranges between 1 and 10.
extracted. Average intensity of difference images computed
by background subtraction, were extracted from the third

camera. For Audio features, from microphone array signals, o . X X .
. L combinations given the fixed value of0.5. We investigate
we first computer a speech activity measure (SRP-PHAT). oo :
three parameter combinations, namely mean, mean+weight,

Three acoust|c_ features, namely energy, pitch and_ SIoefdk'ngnean+weight+variance. As shown in Figure 2(a), the best
rate, were estimated on speech segments, zeroing silence

segments. We used the SIFT algorithm to extract pitch, andperformance was obtained by adaptmganwhile adapting

S . ) mean+weight+variancgave the worse performance. This
a combination of estimators to extract speaking rate [5]. might be explained by the fact that adapting more parame-

Lhttp://mmm.idiap.ch/ ters would require more labeled data.

3.1. Meeting Corpus

The meeting corpus we used consisted of 59 five-minute
four-participant meetings [5], collected in a meeting room
equipped with cameras and microphone# snapshot of
the meeting room is shown in Figure 1. There are three
cameras in the meeting room. Two cameras capture a fronta
view of the meeting participants, and the third camera cap-
tures the white-board and the projector screen. Audio was
recorded using lapel microphones attached to participants
and an eight-microphone array in the center of the table.

3.4. Results and Discussion
We first study the effects of adapting different parameter




08 approach. In other words, at least 7000 labeled samples are

f«g o7l needed for the supervised HMM to perform better than the
S semi-supervised approach. This shows that the best per-
“gJ 0.6p4%" ] formance can be achieved by training directly over enough
§0l5~~', - — mean I labeled training samples while the benefit of using semi-
4 " - meantweight supervised HMM is to achieve better performance when
; ; ; ; ; ‘mean‘+we|gt1t+var|‘ance . . . . . -

0.4 350 2000 3000 2000 5000 6000 7000 8000 9000 10000 there are little (insufficient) labeled data. Motivated by this
Number of Frames (a) observation, we suggest designing a hybrid system: using a

validation set, one can decide when to switch to the super-
vised HMM from semi-supervised HMM.

Finally, note that although the performance using a full
training data set (30 meetings) can be as high as 90% [5] in

o
©
T

1 - Action Error Rate
o
~

06}, ¢ AT terms of(1 — AER), the amount of labeled data required
r —- q=075 is around six times the amount we used in these experi-
0571000 2000 3000 4000 5000 6000 7000 8000 9000 10000 ments. This clearly highlights the tradeoff between the per-
Numberofframes — (b) formance and the cost of collecting / labeling training data.
2 038
&
5 07 4. CONCLUSION
“Yos . . L
8 We presented a semi-supervised framework for audio-visual
<oSr ’ event recognition using HMM adaptation techniques. In-
~0.4p° — adapting mean stead of directly training one model for each event, we first

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 train a well-estimated general model for all events using
© both labeled and unlabeled events, and then adapts the gen-

Fig. 2. (a) Results of the semi-supervised method for adapt-eral event model t_o each specific event model using _its own
ing different paramter combinations. (b) Results of the labeled data. We illustrate the proposed approach with a set

semi-supervised method for differeatvalues. (c) Com- of eight audio-visual events commonly found in meetings.

parison of the semi-supervised and the supervised methods=*Periments and comparison with the supervised HMM method
The x-axis represents the number of labeled frames usednoW that our method could be a good alternative to the

in model training / adaptation (features were extracted at 5SUPervised method, especially for little data, and could be
frames per second) worth investigating in other meeting events.
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