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ABSTRACT

Contextual information is important for sequence modeling.
Hidden Markov Models (HMMs) and extensions, which have
been widely used for sequence modeling, make simplifying,
often unrealistic assumptions on the conditional independence
of observations given the class labels, thus cannot accommo-
date overlapping features or long-term contextual informa-
tion. In this paper, we introduce a principled layered frame-
work with three implementation methods that take into ac-
count contextual information (as available in the whole or part
of the sequence). The first two methods are based on state al-
pha and gamma posteriors (as usually referred to in the HMM
formalism). The third method is based on Conditional Ran-
dom Fields (CRFs), a conditional model that relaxes the inde-
pendent assumption on the observations required by HMMs
for computational tractability. We illustrate our methods with
the application of recognizing group actions in meetings. Ex-
periments and comparison with standard HMM baseline showed
the validity of the proposed approach.

1. INTRODUCTION

Most of the existing work on sequence modeling has used
Hidden Markov Models (HMMs) [7] and extensions, includ-
ing coupled HMMs, input-output HMMs, multi-stream HMMs,
and asynchronous HMMs (see [5] for a recent review of mod-
els). However, HMM-based approach has one well-noted weak-
ness: the assumption on the conditional independence of ob-
servations given the class labels. Therefore, complex features,
such as overlapping and neighboring features, which take into
account the long-term contextual information, cannot be used
in HMM-based approaches.

However, it is widely known that contextual information
is important for sequential activity recognition. For instance,
it may be hard to predict the current activity state solely based
on past activities and current observation. A more superior
method of classification should incorporate a broader series
of consecutive observations both before and after the current
time in consideration. Such contextual information is essen-
tial for sequence modeling.

A multi-layer framework was introduced in [10] for group

action recognition in meetings. The fundamental idea is that,
by defining an adequate set of individual actions, we can de-
compose the group action recognition problem into two lev-
els, from individual to group actions. The output of individual
action layer provides the input to group action layer.

The focus of this paper is to present three methods of im-
plementing such a layered framework that can take into ac-
count the contextual information. The first two methods are
based on state alpha and gamma posterior definitions (as usu-
ally referred to in the HMM formalism). The state alpha and
gamma posterior can take into account the context informa-
tion since it is defined as the probability of being in a state
given the part or the whole observation sequence (see Section
2.2 for details). The third method is based on Conditional
Random Fields (CRFs), a conditional model that relaxes the
independent assumption on the observations required by HMMs
for computational tractability. A key advantage of CRFs is
their great flexibility to include a wide variety of arbitrary,
non-independent features of the input. Thus, CRFs can also
take into account the contextual information (see Section 2.3
for details). All the three methods bring improvement over
the standard HMMs method, which reflects on the results ob-
tained on a 59-meeting corpus, for a set of eight group actions.

The paper is organized as follows. Section 2 introduces
the multi-layer framework and the three implementation meth-
ods. Experiments and discussion are presented in Section 3.
Conclusions are drawn in Section 4.

2. THE MULTI-LAYER FRAMEWORK

The layered framework is illustrated in Figure 1. Details on
the framework have been reported in [10]. In the next sec-
tions, we first briefly describe the layered framework for group
action recognition in meetings, followed by introducing the
ideas of “alpha”, “gamma” and CRFs.

2.1. Framework Overview
Let I-HMM denote the lower recognition layer for individual
action, and G-HMM denote the upper layer for group action.
I-HMM receives as input audio-visual features extracted from
each participant, and outputs recognition results, in the form
of posterior probabilities (α or γ as defined in the following
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Fig. 1. The multi-layer framework applied to group action
recognition: the lower layer recognizes individual actions of
participants using low-level audio-visual (AV) features. The
output of this layer provides the input to the second layer,
which models interactions. Individual actions naturally con-
stitute the link between the low-level audio-visual features
and high-level group actions.

sections). In turn, G-HMM receives as input the output from
I-HMM, and a set of group features, directly extracted from
the raw streams, which are not associated to any particular
individual. In our framework, each layer is trained indepen-
dently, and can be substituted by any of the HMM variants
that might capture better the characteristics of the data.

We next present three implementations of such a layered
framework. To facilitate description, we first define the fol-
lowing symbols:

• the whole observation: X = xT
1 = {x1, ..., xt, ..., xT }

• the past observation: xt
1 = {x1, x2, ..., xt}

• the future observation: xT
t+1 = {xt+1, xt+2, ..., xT }

• the observation within the window: xt+c
t−c =

{xt−c, xt−c+1, ..., xt, ..., xt+c−1, xt+c}
• qt: the HMM state at time t.

In Baum-Welch algorithm [1], also known as the Forward-
Backward procedure, we define,

• Forward variable α(i, t)
def
= P (xt

1, qt = i): the probability
of having generated the sequence xt

1 and being in state i at
time t.

• Backward variable β(i, t)
def
= P (xT

t+1|qt = i): the probabil-
ity to generate the rest of the sequence xT

t+1 given that we are
in state i at time t.

• Variable γ(i, t)
def
= P (qt = i|xT

1 ): the probability being in
state i at time t given the observation sequence xT

1 .

2.2. “Alpha” and “Gamma”
In this method, we first train HMMs for the individual action
layer. The output of the individual action layer is in the form
of α-based features. The output feature vector serves as the
input to the upper layer, which is also trained independently.
This method takes into account of the contextual information
based on the “past” observation , i.e, the observation sequence
upon current time t: xtsequence1. The linked features are
defined as the probability of state i given xt

1 is P (qt = i|xt
1),

HMMs

HMMs

 \gamma

HMMs

HMMs

 \alpha

HMMs
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 state sequence      

Fig. 2. Illustration of context information (Note that t indi-
cates the current time): (A) without contextual information;
(B) “Alpha” taking into account the contextual information of
the past observation from the beginning upto the current time
Xt

1; (C) “Gamma” taking into account the contextual infor-
mation of the whole observation XT

1 ; (D) Conditional random
field taking into account the arbitrary contextual information.

which can be calculated as:

P (qt = i|xt
1) =

P (qt = i, xt
1)

P (xt
1)

=
α(i, t)

∑NS

j=1 α(j, t),
(1)

where NS is the total number of states. Obviously, P (qt =
i|xt

1) is a posterior probability measure so that

NS∑

i=1

P (qt = i|xt
1) = 1 (2)

The second method based on γ is similar to the above
method based on α. In this method, we take into the contex-
tual information of the whole observation sequence (both past
and the future sequence): xT

1 . The probability of state i given
the whole sequence xT

1 is defined as γ. The variable γ(i, t)
can be expressed in terms of the forward-backward variables,

γ(i, t) =
α(i, t)β(i, t)

∑NS

i=1 α(i, t)β(i, t)
, (3)

where NS is the total number of states. Note that the nor-
malization factor

∑NS

i=1 α(i, t)β(i, t) makes γ(i, t) a posterior
probability measure so that

NS∑

i=1

γ(i, t) = 1 (4)

2.3. Conditional Random Fields
Conditional random fields (CRFs), a special case of undi-
rected graphical model shown in Figure 3, were introduced
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originally by [4] for modeling sequences. Recently, there has
been an explosion of interest in CRFs, with successful appli-
cations including text processing [6, 9], bio-informatics [8],
and computer vision [3].

The underlying idea of CRFs is that of defining a con-
ditional probability distribution over label sequences given a
particular observation sequence, rather than a joint distribu-
tion over both label and observation sequences. The primary
advantage of CRFs over hidden Markov models is their con-
ditional nature, resulting in the relaxation of the independence
assumptions required by HMMs in order to ensure tractable
inference. Therefore, CRFs has the great flexibility to include
a wide variety of arbitrary, non-independent features of the
input. As illustrated in Figure 2 (D), we can see that CRFs
can take into account the contextual information by defining
arbitrary, non-independent features.

Now let X = {x1, x2, ...xT } be the observed input data
sequence. Let Y be a set of states, each of which is associated
with a label and {y1, y2, ...yT } is a sequence of states. Linear-
chain CRFs thus define the conditional probability of a state
sequence given an input sequence to be

P (Y |X) =
1
Zo

exp(
T∑

t=1

Fθ(yt, yt−1, X)), (5)

where Zo is a normalization factor over all state sequences.
CRF is in terms of exponentiated feature functions Fθ, com-
puted in terms of weighted sums over the features of the cliques.
In particular,

T∑

t=1

Fθ(yt, yt−1, X) =
∑

j

λjtj(yt−1, yt, X, t)

+
∑

k

μksk(yt, X, t)), (6)

where tj(yt−1, yt, x, t) is a transition feature function of the
entire observation sequence and the labels at positions t and
t− 1 in the label sequence; sk(yt, x, t) is a state feature func-
tion of the label at position t and the observation sequence;
and λj and μk are parameters to be estimated from training
data. The CRFs training and decoding can be performed us-
ing gradient descent and Viterbi algorithms (for more details,
please refer to [9]).

3. EXPERIMENTS

3.1. Data Sets, Actions, and Audio-Visual Features

We use a set of 59 five-minute, four-participant meetings,
recorded in a room equipped with three cameras and 12 mi-
crophones. Although the meetings were recorded according
to a script for turn-taking patterns, the participants behavior
was unconstrained and reasonably natural. A sets of indi-
vidual action (like writing, speaking) and group actions (like
discussion, monologue, or presentation) have been defined.

X

Y t-1 Yt Yt+1

Fig. 3. Conditional Random Fields: the hidden nodes can
depend on observations at any time step, thus relaxing the
independence assumptions required by HMMs.

The monologue action is further distinguished by the person
actually holding the monologue (e.g. monologue 1 is meet-
ing participant one speaking). We also define combinations
of two parallel actions (like a presentation and note-taking).
The investigated actions are multimodal, we therefore we ex-
tracted a set of generic features, including audio features de-
rived from microphone arrays and lapel microphones, and vi-
sual features extracted from skin color blobs from each par-
ticipant. Details on data sets, action lexicons and audio-visual
features have been reported in [10].

3.2. Results and Discussions
We investigated the following four configurations:

• Single-layer HMMs: A normal HMM is trained using the
audio-visual features extracted from each participant and con-
catenated together.

• Alpha: Using the α posterior probability outputs from indi-
vidual action layer as input to the group action recognition
layer (Section 2.2).

• Gamma: Using the γ posterior probability outputs from in-
dividual action layer as input to the group action recognition
layer (Section 2.2).

• HMM + CRFs: We use HMM modeling individual action.
The output is a sequence of a state sequence resulted from
Viterbi decoding. The output state sequence serves as input
to the group action layer, which is modeled using conditional
random fields (Section 2.3).

The data set is divided into 30 meetings for training, and 29
for testing. For training, we used ten-fold cross-validation
to select the hyper-parameters (i.e. the number of states, the
number of Gaussian). After the best parameters were chosen,
we re-trained models on the whole training set and applied the
models on the test set. The results are summarized in Table
1, Figure 4 and Figure 5, in terms of Frame Error Rate (FER)
and Action Error Rate (AER) respectively.

We first discuss results in terms of FER shown in Fig-
ure 4. We can observe that (1) the multi-layered methods
(using α, γ, or CRFs) always out-perform the single-layer
HMMs. For example, the α-based multi-layer approach pro-
duced 19% FER, which is 6% absolute improvement over
using the single-layer HMMs. This improvement is statisti-
cally significant with a confidence level above 95%, using a
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Table 1. Results of four methods in terms of FER and AER.

Method FER (%) AER (%)
Single-layer HMMs 25.42 23.47

α 19.32 16.83
Multi-layer γ 17.47 15.42

CRFs 13.56 15.11

Single−layer HMM Alpha Gamma HMM+CRF
0

0.05

0.1

0.15

0.2

0.25

Frame Error Rate

Fig. 4. Comparison of the four methods – the single-layer
HMMs, the multi-layer approach based on α, γ, and CRFs –
in terms of FER (frame error rate).

standard proportion test [2]. (2) Regarding the three multi-
layer methods, CRFs produced the best results with the FER
of 13%, which is 4% absolute improvement over the second
best method based on γ significant at 95% confidence level.
There might be two reasons. First, CRFs take into account
contextual information by including a wide variety of arbi-
trary, non-independent features of the observation sequence.
Thus CRFs are more flexible than α and γ. Second, CRFs
are a conditional model training for maximizing the poste-
rior probability over label sequences given the observation
sequence, rather than a joint distribution over both label and
observation sequences in HMMs. (3) We can also see that γ
outperforms α. This is not surprising given that γ takes into
account the whole observation sequence as contextual infor-
mation while α only takes into account the part observation
contextual information upon the the current time.

In terms of AER, we can observe the same trend. The
multi-layer approaches always outperform the single-layer HMMs
statistically significant at 95% confidence level. CRFs got the
best performance among the three methods, although the im-
provements are not statistically significant given the few num-
ber of group actions.

4. CONCLUSIONS

We addressed the problem of recognizing group actions in
meetings with a layered framework. We presented three im-
plementation methods (alpha, gamma, CRFs) that can take

Single−layer HMM Alpha Gamma HMM+CRF
0

0.05

0.1

0.15

0.2

0.25
Action Error Rate

Fig. 5. Comparison of the four methods – the single-layer
HMMs, the multi-layer approach based on α, γ, and CRFs –
in terms of AER (action error rate).

into account the contextual information. The state alpha and
gamma can take into account the context information by def-
initions as the probability of being in a state given the part
or whole observations. CRFs takes into account contextual
information by including a wide variety of arbitrary, non-
independent features. Experiments on a public 59-meeting
corpus demonstrate the effectiveness of the proposed meth-
ods to recognize a set of eight group actions.
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